丫丫文章网 >方案大全

初一数学下教案优质8篇

教案的设计需要充分考虑学生的需求和兴趣,教师可以参考研究和最佳实践来改进教案的适切性,下面是丫丫文章网小编为您分享的初一数学下教案优质8篇,感谢您的参阅。

初一数学下教案优质8篇

初一数学下教案篇1

7.3.1多边形

[教学目标]

1.了解多边形及有关概念,理解正多边形及其有关概念.

2.区别凸多边形与凹多边形.

[教学重点、难点]

1.重点:

(1)了解多边形及其有关概念,理解正多边形及其有关概念.

(2)区别凸多边形和凹多边形.

2.难点:

多边形定义的准确理解.

[教学过程]

一、新课讲授

投影:图形见课本p84图7.3一l.

你能从投影里找出几个由一些线段围成的图形吗?

上面三图中让同学边看、边议.

在同学议论的基础上,老师给以总结,这些线段围成的图形有何特性?

(1)它们在同一平面内.

(2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的.

这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢?

提问:三角形的定义.

你能仿照三角形的定义给多边形定义吗?

1.在平面内,由一些线段首位顺次相接组成的图形叫做多边形.

如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)

2.多边形的边、顶点、内角和外角.

多边形相邻两边组成的角叫做多边形的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角.

3.多边形的'对角线

连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线.

让学生画出五边形的所有对角线.

4.凸多边形与凹多边形

看投影:图形见课本p85.7.3—6.

在图(1)中,画出四边形abcd的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画bd所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形,今后我们在习题、练习中提到的多边形都是凸多边形.

5.正多边形

由正方形的特征出发,得出正多边形的概念.

各个角都相等,各条边都相等的多边形叫做正多边形.

二、课堂练习

课本p86练习1.2.

三、课堂小结

引导学生总结本节课的相关概念.

四、课后作业

课本p90第1题.

备用题:

一、判断题.

1.由四条线段首尾顺次相接组成的图形叫四边形.()

2.由不在一直线上四条线段首尾次顺次相接组成的图形叫四边形.()

3.由不在一直线上四条线段首尾顺次接组成的图形,且其中任何一条线段所在的直线、使整个图形都在这直线的同一侧,叫做四边形.()

4.在同一平面内,四条线段首尾顺次连接组成的图形叫四边形.()

二、填空题.

1.连接多边形的线段,叫做多边形的对角线.

2.多边形的任何整个多边形都在这条直线的,这样的多边形叫凸多边形.

3.各个角,各条边的多边形,叫正多边形.

三、解答题.

1.画出图(1)中的六边形abcdef的所有对角线.

2.如图(2),o为四边形abcd内一点,连接oa、ob、oc、od可以得几个三角形?它与边数有何关系?

3.如图(3),o在五边形abcde的ab上,连接oc、od、oe,可以得到几个三角形?它与边数有何关系?

4.如图(4),过a作六边形abcdef的对角线,可以得到几个三角形?它与边数有何关系?

初一数学下教案篇2

一、教学目标:

1、知识目标:

使学生理解同类项的概念和合并同类项的意义,学会合并同类项。

2、能力目标:

培养学生观察、分析、归纳和动手解决问题的能力,初步使学生了解数学的分类思想。

3、情感目标:

借助情感因素,营造亲切和谐活泼的课堂气氛,激励全体学生积极参与教学活动。培养他们团结协作,严谨求实的学习作风和锲而不舍,勇于创新的精神。

二、教学重点、难点:

重点:同类项的概念和合并同类项的法则

难点:合并同类项

三、教学过程:

(一)情景导入:

1、观察下面的图片,并将这些图片分类:

你是依据什么来进行分类的呢?

生活中,我们常常为了需要把具有相同特征的事物归为一类。

2、对下列水果进行分类:

(二)新知探究1:

1、对下列八个单项式进行分类:

a,6_2,5,cd,-1,2_2,4a,-2cd

这些被归为同一类的项有什么相同的特征?

2、揭示同类项的概念。

同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。另外,所有的常数项都是同类项。

?3.4合并同类项》同步练习

1、已知代数式2a3bn+1与-3am-2b2是同类项,则2m+3n=________.

2、若-4_ay+_2yb=-3_2y,则a+b=_______.

3、下面运算正确的是( )

a.3a+2b=5ab b.3a2b-3ba2=0

c.3_2+2_3=5_5 d.3y2-2y2=1

4、已知一个多项式与3_2+9_的和等于3_2+4_-1,则这个多项式是( )

a.-5_-1 b.5_+1

c.-13_-1 d.13_+1

?3.4合并同类项》测试

1、下列说法中,正确的是( )

a.字母相同的项是同类项

b.指数相同的项是同类项

c.次数相同的项是同类项

d.只有系数不同的项是同类项

初一数学下教案篇3

教学目标:

1、经历探索完全平方公式的过程,并从完全平方公式的推导过程中,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力。

2、体会公式的发现和推导过程,理解公式的本质,从不同的层次上理解完全平方公式,并会运用公式进行简单的计算。

3、了解完全平方公式的几何背景,培养学生的数形结合意识。

4、在学习中使学生体会学习数学的乐趣,培养学习数学的信心,感爱数学的内在美。

教学重点:

1、弄清完全平方公式的来源及其结构特点,用自己的语言说明公式及其特点;

2、会用完全平方公式进行运算。

教学难点:

会用完全平方公式进行运算

教学方法:

探索讨论、归纳总结。

教学过程:

一、回顾与思考

活动内容:复习已学过的平方差公式

1、平方差公式:(a+b)(a—b)=a2—b2;

公式的结构特点:左边是两个二项式的乘积,即两数和与这两数差的积。

右边是两数的平方差。

2、应用平方差公式的注意事项:弄清在什么情况下才能使用平方差公式。

二、情境引入

活动内容:提出问题:

一块边长为a米的正方形实验田,由于效益比较高,所以要扩大农田,将其边长增加b米,形成四块实验田,以种植不同的新品种(如图)。

用不同的形式表示实验田的总面积,并进行比较。

三、初识完全平方公式

活动内容:

1、通过多项式的乘法法则来验证(a+b)2=a2+2ab+b2的正确性。并利用两数和的完全平方公式推导出两数差的完全平方公式:(a—b)2=a2—2ab+b2。

2、引导学生利用几何图形来验证两数差的完全平方公式。

3、分析完全平方公式的结构特点,并用语言来描述完全平方公式。

结构特点:左边是二项式(两数和(差))的平方;

右边是两数的平方和加上(减去)这两数乘积的两倍。

语言描述:两数和(或差)的平方,等于这两数的平方和加上(或减去)这两数积的两倍。

四、再识完全平方公式

活动内容:例1用完全平方公式计算:

(1)(2x?3)2(2)(4x+5y)2(3)(mn?a)2(4)(2x)2(5)(—2x+1)2

2、总结口诀:首平方,尾平方,两倍乘积放中央,加减看前方,同加异减。

五、巩固练习:

1、下列各式中哪些可以运用完全平方公式计算。

1、6完全平方公式:

一、学习目标

1、会推导完全平方公式,并能运用公式进行简单的计算。

2、了解完全平方公式的几何背景

二、学习重点:会用完全平方公式进行运算。

三、学习难点:理解完全平方公式的结构特征并能灵活应用公式进行计算。

四、学习设计

(一)预习准备

(1)预习书p23—26

(2)思考:和的平方等于平方的和吗?

1、6《完全平方公式》习题

1、已知实数x、y都大于2,试比较这两个数的积与这两个数的和的大小,并说明理由。

2、已知(a+b)2=24,(a—b)2=20,求:

(1)ab的值是多少?

(2)a2+b2的值是多少?

3、已知2(x+y)=—6,xy=1,求代数式(x+2)—(3xy—y)的值。

?1、6完全平方公式》课时练习

1、(5—x2)2等于;

答案:25—10x2+x4

解析:解答:(5—x2)2=25—10x2+x4

分析:根据完全平方公式与幂的乘方法则可完成此题。

2、(x—2y)2等于;

答案:x2—8xy+4y2

解析:解答:(x—2y)2=x2—8xy+4y2

分析:根据完全平方公式与积的乘方法则可完成此题。

3、(3a—4b)2等于;

答案:9a2—24ab+16b2

解析:解答:(3a—4b)2=9a2—24ab+16b2

分析:根据完全平方公式可完成此题。

初一数学下教案篇4

初一上册数学教案,欢迎各位老师和学生参考!

学习目标:1、理解有理数的绝对值和相反数的意义。

2、会求已知数的相反数和绝对值。

3、会用绝对值比较两个负数的大小。

4、经历将实际问题数学化的过程,感受数学与生活的联系。

学习重点:1.会用绝对值比较两个负数的大小。

2.会求已知数的相反数和绝对值。

学习难点:理解有理数的绝对值和相反数的意义。

学习过程:

一、创设情境

根据绝对值与相反数的意义填空:

1、

2、

-5的相反数是______,-10.5的相反数是______, 的相反数是______;

3、|0|=______,0的相反数是______。

二、探索感悟

1、议一议

(1)任意说出一个数,说出它的绝对值、它的相反数。

(2)一个数的绝对值与这个数本身或它的相反数有什么关系?

2、想一想

(1)2与3哪个大?这两个数的绝对值哪个大?

(2)-1与-4哪个大?这两个数的绝对值哪个大?

(3)任意写出两个负数,并说出这两个负数哪个大?他们的绝对值哪个大?

(4)两个有理数的大小与这两个数的绝对值的大小有什么关系?

三.例题精讲

例1. 求下列各数的.绝对值:

+9,-16,-0.2,0.

求一个数的绝对值,首先要分清这个数是正数、负数还是0,然后才能正确地写出它的绝对值。

议一议:(1)两个数比较大小,绝对值大的那个数一定大吗?

(2)数轴上的点的大小是如何排列的?

例2比较-10.12与-5.2的大小。

例3.求6、-6、14 、-14 的绝对值。

小节与思考:

这节课你有何收获?

四.练习

1. 填空:

⑴ 的符号是 ,绝对值是 ;

⑵10.5的符号是 ,绝对值是

⑶符号是+号,绝对值是 的数是

⑷符号是-号,绝对值是9的数是 ;

⑸符号是-号,绝对值是0.37的数是 .

2. 正式足球比赛时所用足球的质量有严格的规定,下表是6个足球的质量检测结果(用正数记超过规定质量的克数,用负数记不足规定质量的克数).

请指出哪个足球质量最好,为什么?

第1个第2个第3个第4个第5个第6个

-25-10+20+30+15-40

3.比较下面有理数的大小

(1)-0.7与-1.7 (2) (3) (4)-5与0

五、布置作业:

p25 习题2.3 5

家庭作业:《评价手册》 《补充习题》

六、学后记/教后记

这篇初一上册数学教案就为大家分享到这里了。希望对大家有所帮助!

初一数学下教案篇5

一、知识要点

本章的主要内容可以概括为有理数的概念与有理数的运算两部分。有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。有理数的运算是全章的重点。在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。

基础知识:

1、大于0的数叫做正数。

2、在正数前面加上负号“-”的数叫做负数。

3、0既不是正数也不是负数。

4、有理数(rationalnumber):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

5、数轴(numberaxis):通常,用一条直线上的点表示数,这条直线叫做数轴。

数轴满足以下要求:

(1)在直线上任取一个点表示数0,这个点叫做原点(origin);

(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;

(3)选取适当的长度为单位长度。

6、相反数(oppositenumber):绝对值相等,只有负号不同的两个数叫做互为相反数。

7、绝对值(absolutevalue)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。

由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.

正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。

8、有理数加法法则

(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0.

(3)一个数同0相加,仍得这个数。

加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。表达式:a+b=b+a。

加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。

表达式:(a+b)+c=a+(b+c)

9、有理数减法法则

减去一个数,等于加这个数的相反数。表达式:a-b=a+(-b)

10、有理数乘法法则

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0.

乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。表达式:ab=ba

乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。表达式:(ab)c=a(bc)

乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

表达式:a(b+c)=ab+ac

11、倒数

1除以一个数(零除外)的商,叫做这个数的倒数。如果两个数互为倒数,那么这两个数的积等于1。

12、有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。0除以任何一个不等于0的数,都得0.

13、有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。an中,a叫做底数(basenumber),n叫做指数(exponent)。

根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。

14、有理数的混合运算顺序

(1)“先乘方,再乘除,最后加减”的顺序进行;

(2)同级运算,从左到右进行;

(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

15、科学技术法:把一个大于10的数表示成a﹡10n的形式(其中a是整数数位只有一位的数(即0

16、近似数(approximatenumber):

17、有理数可以写成m/n(m、n是整数,n≠0)的形式。另一方面,形如m/n(m、n是整数,n≠0)的数都是有理数。所以有理数可以用m/n(m、n是整数,n≠0)表示。

拓展知识:

1、数集:把一些数放在一起,就组成一个数的集合,简称数集。

一、(1)所有有理数组成的数集叫做有理数集;

二、(2)所有的整数组成的数集叫做整数集。

2、任何有理数都可以用数轴上的一个点来表示,体现了数形结合的数学思想。

3、根据绝对值的.几何意义知道:|a|≥0,即对任何有理数a,它的绝对值是非负数。

4、比较两个有理数大小的方法有:

(1)根据有理数在数轴上对应的点的位置直接比较;

(2)根据规定进行比较:两个正数;正数与零;负数与零;正数与负数;两个负数,体现了分类讨论的数学思想;

(3)做差法:a-b>0a>b;

(4)做商法:a/b>1,b>0a>b.

二、基础训练

选择题

1、下列运算中正确的是().

a.a2a3=a6 b.=2 c.|(3-π)|=-π-3 d.32=-9

2、下列各判断句中错误的是()

a.数轴上原点的位置可以任意选定

b.数轴上与原点的距离等于个单位的点有两个

c.与原点距离等于-2的点应当用原点左边第2个单位的点来表示

d.数轴上无论怎样靠近的两个表示有理数的点之间,一定还存在着表示有理数的点。

3、、是有理数,若>且,下列说法正确的是()

a.一定是正数b.一定是负数c.一定是正数d.一定是负数

4、两数相加,如果比每个加数都小,那么这两个数是()

a.同为正数b.同为负数c.一个正数,一个负数d.0和一个负数

5、两个非零有理数的和为零,则它们的商是()

a.0b.-1c.+1d.不能确定

6、一个数和它的倒数相等,则这个数是()

a.1b.-1c.±1d.±1和0

7、如果|a|=-a,下列成立的是()

a.a>0b.a0或a=0d.a

8、(-2)11+(-2)10的值是()

a.-2b.(-2)21c.0d.-210

9、已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水()

a.3瓶b.4瓶c.5瓶d.6瓶

10、在下列说法中,正确的个数是()

⑴任何一个有理数都可以用数轴上的一个点来表示

⑵数轴上的每一个点都表示一个有理数

⑶任何有理数的绝对值都不可能是负数

⑷每个有理数都有相反数

a、1b、2c、3d、4

11、如果一个数的相反数比它本身大,那么这个数为()

a、正数b、负数

c、整数d、不等于零的有理数

12、下列说法正确的是()

a、几个有理数相乘,当因数有奇数个时,积为负;

b、几个有理数相乘,当正因数有奇数个时,积为负;

c、几个有理数相乘,当负因数有奇数个时,积为负;

d、几个有理数相乘,当积为负数时,负因数有奇数个;

填空题

1、在有理数-7,,-(-1.43),,0,,-1.7321中,是整数的有_____________是负分数的有_______________。

2、一般地,设a是一个正数,则数轴上表示数a的点在原点的____边,与原点的距离是____个单位长度;表示数-a的点在原点的____边,与原点的距离是____个单位长度。

3、如果一个数是6位整数,用科学记数法表示它时,10的指数是_____;用科学记数法表示一个n位整数,其中10的指数是___________.

4、实数a、b、c在数轴上的位置如图:化简|a-b|+|b-c|-|c-a|.

5、绝对值大于1而小于4的整数有_____________________________________,其和为___________.

6、若a、b互为相反数,c、d互为倒数,则(a+b)3-3(cd)4=________.

7、1-2+3-4+5-6+……+20xx-2002的值是____________.

8、若(a-1)2+|b+2|=0,那么a+b=_____________________.

9、平方等于它本身的有理数是___________,立方等于它本身的有理数是_____________.

10、用四舍五入法把3.1415926精确到千分位是,用科学记数法表示302400,应记为,近似数3.0×精确到位。

11、正数–a的绝对值为__________;负数–b的绝对值为________

12、甲乙两数的和为-23.4,乙数为-8.1,甲比乙大

13、在数轴上表示两个数,的数总比的大。(用“左边”“右边”填空)

14、数轴上原点右边4.8厘米处的点表示的有理数是32,那么,数轴左边18厘米处的点表示的有理数是____________。

三、强化训练

1、计算:1+2+3+…+20xx+2003=__________.

2、已知:若(a,b均为整数)则a+b=

3、观察下列等式,你会发现什么规律:,,,。。。请将你发现的规律用只含一个字母n(n为正整数)的等式表示出来

4、已知,则___________

5、已知是整数,是一个偶数,则a是(奇,偶)

6、已知1+2+3+…+31+32+33==17×33,求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值。

7、在数1,2,3,…,50前添“+”或“-”,并求它们的和,所得结果的最小非负数是多少?请列出算式解答。

8、如果有理数a,b满足∣ab-2∣+(1-b)2=0,试求+…+的值。

9、如果规定符号“*”的意义是a*b=ab/(a+b),求2*(-3)*4的值。

10、已知|x+1|=4,(y+2)2=4,求x+y的值。

11、投资股票是一种很重要的投资方式,但股市的风云变化又牵动了股民的心。

例:某股民在上星期五买进某种股票500股,每股60元,下表是本周每日该股票的涨跌情况(单位:元):

星期一二三四五

每股涨跌+4+4.5-1-2.5-6

第1章(1)星期三收盘时,每股是多少元?

第2章(2)本周内最高价是每股多少元?最低价是多少元?

第3章(3)已知买进股票是付了1.5‰的手续费,卖出时需付成交额1.5‰的手续费和1‰的交易费,如果在星期五收盘前将全部股票一次性地卖出,他的收益情况如何?

第4章(4)以买进的股价为0点,用折线统计图表示本周该股的股价情况。

四、竞赛训练:

1、最小的非负有理数与最大的非正有理数的和是

2、乘积=

3、比较大小:a=,b=,则a b

4、满足不等式104≤a≤105的整数a的个数是x×104+1,则x的值是( )

a、9 b、8 c、7 d、6

5、最小的一位数的质数与最小的两位数的质数的积是( )

a、11 b、22 c、26 d、33

6、比较

7、计算:

8、计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).xkb1.com

9、计算:

10、计算

11、计算1+3+5+7+…+1997+1999的值

12、计算1+5+52+53+…+599+5100的值.

13、有理数均不为0,且设试求代数式20xx之值。

14、已知a、b、c为实数,且,求的值。

15、已知:。

16、解方程组。

17、若a、b、c为整数,且,求的值。

1.2.1有理数

七年级上(1.1正数和负数,1.2有理数)

1.2有理数

初一数学下教案篇6

(1)常见的几何体;

(2)构成图形的基本元素——点、线、面及点、线与平面

图形的一些简单性质;点动成线,线动成面,面动成体

(3)棱柱的特征;并注意棱柱和圆柱的联系与区别

(4)长方体、正方体的表面沿某些棱展开的平面图形及圆

柱、圆锥的侧面展开图;

(5)用一个平面去截一个几何体,截面的形状;

(6)物体的三视图,立方体及其简单组合的三视图;

(7)生活中的平面图形。

一。填空:

1、这个几何体的名称是______;它有_____个面组成;它有____个顶点;经过每个顶点有____条边。

2、正方体或长方体是一个立体图形,它是由______个面,______条棱,_____个顶点组成的。

3、在①长方体、②球、③圆锥、④圆柱、⑤三棱柱这五种几何体中,其主视图、左视图、俯视图都完全相同的是(填上序号即可)

4、一个棱柱有十个顶点,且所有侧棱的和为30cm,则每条侧棱长为cm.

5、将下面4个图用纸复制下来,然后沿所画线折起来,把折成的立体图形名称写在图的下边横线上:

6、如图是一些相同的正方块构成的立体图形的三视图,则构成这个立体图形的小方块数为。

7、如图所示,木工师傅把一个长为1.6米的长方体木料锯成3段后,表面积比原来增加了

80,那么这根木料本来的体积是

8、要把一个长方体的表面剪开展成平面图形,至少需要剪开________条棱。

9、如图,截去正方体一角变成一个多面体,这个多面体有____个面,____条棱。

10、若要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为6,x=____,y=____.

11、四棱柱按如图粗线剪开一些棱,展成平面图形,请画出平面图来:

12、薄薄的硬币在桌面上转动时,看上去象球,这说明了_____________.

13、右图中,三角形共有个。

14、如图是用边长为1的小正方体摆放成的一个几何体的三视图,这个几何体的表面积为。

第13题主视图俯视图左视图

二:选择题(每题4分,共24分)。

15、桌上摆满了朋友们送来的礼物,小狗贝贝好奇地想看个究竟。

pqmn

①小狗先是站在地面上看,②然后抬起了前腿看,③唉,还是站到凳子上看吧,④最后,

它终于爬上了桌子………按小狗四次看礼物的顺序,四个画面的顺序为()

a.mnpqb.q

16、以下四个平面图形中,不是正方体的展开图的是()

abcd

17、只有盖的盒子长、宽、高分别为5、5、3cm,如图所示,有一只蚂蚁从a点出

发,沿棱爬行,爬行的路径不许重复,则蚂蚁回到a点时,最多爬行()

a.24cmb.32cmc.34cmd.48cm

18、一个几何体是由若干个相同的正方体组成的,其主视图和左视图

如图所示,则这个几何体最多可由多少个这样的正方体组成()

a.12个b.13个c.14个d.18个

19、把一个正方体截去一个角,剩下的几何体最多有几个面()

a.5个面b.6个面c.7个面d.8个面

20、从多边形一条边上的一点(不是顶点)发出发,连接各个顶点得

到20xx个三角形,则这个多边形的边数为()。

a.20xxb.20xxc.20xxd.20xx

21、下列四个图形折叠后与所得的正方体的各个面上所标数字一致的是()

22、如图(1)是正方体表面积展开图,如果将其折回原来的

正方体图(2)时,与点p重合的两点应该是()

a.s和zb.t和y

c.u和yd.t和v

23、用一个平面去截①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是()

a.①②④ b.①②③ c.②③④ d.①③④

24、如图是正方体的表面展开图,折叠成正方体后,其中哪两个完全相同()

a.(1)(2)b.(2)(3)c.(3)(4)d.(2)(4)

25、从多边形一个顶点处出发,连接各个顶点得到20xx个三角形,

则这个多边形的边数为()

a.20xxb.20xxc.20xxd.20xx

初一数学下教案篇7

教学目标

教学知识点:能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题。

能力训练要求:1.学会观察图形,勇于探索图形间的关系,培养学生的空间观念。

2、在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。

情感与价值观要求:1.通过有趣的问题提高学习数学的兴趣。

2、在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有用的数学。

教学重点难点:

重点:探索、发现给定事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题。

难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题。

教学过程

1、创设问题情境,引入新课:

前几节课我们学习了勾股定理,你还记得它有什么作用吗?

例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子?

根据题意,(如图)ac是建筑物,则ac=12米,bc=5米,ab是梯子的长度。所以在rt△abc中,ab2=ac2+bc2=122+52=132;ab=13米。

所以至少需13米长的梯子。

2、讲授新课:①、蚂蚁怎么走最近

出示问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米。在圆行柱的底面a点有一只蚂蚁,它想吃到上底面上与a点相对的b点处的食物,需要爬行的的最短路程是多少?(π的值取3)。

(1)同学们可自己做一个圆柱,尝试从a点到b点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢?(小组讨论)

(2)如图,将圆柱侧面剪开展开成一个长方形,从a点到b点的最短路线是什么?你画对了吗?

(3)蚂蚁从a点出发,想吃到b点上的食物,它沿圆柱侧面爬行的最短路程是多少?(学生分组讨论,公布结果)

我们知道,圆柱的侧面展开图是一长方形。好了,现在咱们就用剪刀沿母线aa′将圆柱的侧面展开(如下图)。

我们不难发现,刚才几位同学的走法:

(1)a→a′→b;(2)a→b′→b;

(3)a→d→b;(4)a—→b.

哪条路线是最短呢?你画对了吗?

第(4)条路线最短。因为“两点之间的连线中线段最短”。

②、做一做:教材14页。李叔叔随身只带卷尺检测ad,bc是否与底边ab垂直,也就是要检测∠dab=90°,∠cba=90°。连结bd或ac,也就是要检测△dab和△cba是否为直角三角 .1mi.net 形。很显然,这是一个需用勾股定理的逆定理来解决的实际问题。

③、随堂练习

出示投影片

1、甲、乙两位探险者,到沙漠进行探险。某日早晨8∶00甲先出发,他以6千米/时的速度向东行走。1时后乙出发,他以5千米/时的速度向北行进。上午10∶00,甲、乙两人相距多远?

2、如图,有一个高1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分是0.5米,问这根铁棒应有多长?

1、分析:首先我们需要根据题意将实际问题转化成数学模型。

解:(如图)根据题意,可知a是甲、乙的出发点,10∶00时甲到达b点,则ab=2×6=12(千米);乙到达c点,则ac=1×5=5(千米)。

在rt△abc中,bc2=ac2+ab2=52+122=169=132,所以bc=13千米。即甲、乙两人相距13千米。

2、分析:从题意可知,没有告诉铁棒是如何插入油桶中,因而铁棒的长是一个取值范围而不是固定的长度,所以铁棒最长时,是插入至底部的a点处,铁棒最短时是垂直于底面时。

解:设伸入油桶中的长度为x米,则应求最长时和最短时的值。

(1)x2=1.52+22,x2=6.25,x=2.5

所以最长是2.5+0.5=3(米)。

(2)x=1.5,最短是1.5+0.5=2(米)。

答:这根铁棒的长应在2~3米之间(包含2米、3米)。

3、试一试(课本p15)

在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形。在水池正中央有一根新生的芦苇,它高出水面1尺。如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面。请问这个水池的深度和这根芦苇的长度各为多少?

我们可以将这个实际问题转化成数学模型。

解:如图,设水深为x尺,则芦苇长为(x+1)尺,由勾股定理可求得

(x+1)2=x2+52,x2+2x+1=x2+25

解得x=12

则水池的深度为12尺,芦苇长13尺。

④、课时小结

这节课我们利用勾股定理和它的逆定理解决了生活中的几个实际问题。我们从中可以发现用数学知识解决这些实际问题,更为重要的是将它们转化成数学模型。

⑤、课后作业

课本p25、习题1.52

1、能运用加法运算律简化加法运算。

2、理解加法运算律在加法运算中的作用,适当进行推理训练。

教学重点:如何运用加法运算律简化运算。

教学难点:灵活运用加法运算律。

初一数学下教案篇8

教学目标

使学生进一步理解立方根的概念,并能熟练地进行求一个数的立方根的运算;

能用有理数估计一个无理数的大致范围,使学生形成估算的意识,培养学生的估算能力;

经历运用计算器探求数学规律的过程,发展合情推理能力。

教学难点

用有理数估计一个无理的大致范围。

知识重点

用有理数估计一个无理的大致范围。

对于计算器的使用,在教学中采用学生自己阅读计算器的说明书、自己操作练习来掌握用计算器进行开立方运算的方法,并让学生互相交流,让学生亲身体会到利用计算器不仅能给运算带来很大的方便,也给探求数量间的关系与变化带来方便。在教学过程中,教师要关注学生能否通过阅读,掌握用计算器进行开立方运算的简单操作;能否利用计算器探究数量间的关系,从而寻找出数量的变化关系。

使用计算器进行复杂运算,可以使学生学习的重点更好地集中到理解数学的本质上来,而估算也是一种具有实际应用价值的运算能力,在本节课的课堂教学中综合运用笔算、计算器和估算等培养学生的运算能力。

会计实习心得体会最新模板相关文章:

2023高二下数学工作总结模板8篇

初一数学个人工作总结7篇

四语文下教学工作计划优质8篇

四年级数学下学期教学工作总结8篇

小学数学三年级数学教案优质6篇

二年级数学下学期教学工作总结优秀7篇

作文我600字初一作文优质8篇

三年级数学下学期教学工作总结6篇

二年级数学下学期工作总结优秀7篇

二年级数学下学期工作总结7篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    104787

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。