教案的编写过程可以帮助教师更好地评估学生的学习成果,教案可以帮助教师培养自主学习和自我提升的意识,不断提高教学水平,下面是丫丫文章网小编为您分享的小学解决问题教案6篇,感谢您的参阅。
小学解决问题教案篇1
教学内容:教科书第90页例2及练习二十一第1~4题。
教学目标:
1. 掌握稍复杂的求一个数比另一个数多(或少)百分之几的问题的解答方法。
2. 提高学生迁移类推和分析、解决问题的能力。
教学过程:
一、复习准备
1. 把下面各数化成百分数。
0.63 1.08 7 0.044 1/4 3/5 7/20 5/8
2. 说说下面每个百分数的具体含义,是怎么求出来的?(哪两个数相比,把谁看作单位“1”。)
某种花生的出油率是36%。
实际用电量占计划用电量的80%。
李家今年荔枝产量是去年的120%。
二、学习新课
1. 根据数学信息提问题。
出示例2的情境图,让学生根据图中提供的条件提出用百分数解决的问题。
学生可能提出以下问题:
①计划造林是实际造林百分之几?
②实际造林是计划造林百分之几?
③实际造林比计划造林增加百分之几?
④计划造林比实际造林少百分之几?
2. 让学生先解决前两个问题。
通过这两个问题的解决,提醒学生注意:解决这类问题一定先弄清楚哪两个数相比,哪个数是单位“1”,哪一个数与单位“1”相比。为学生学习新课解决数量关系稍复杂的求一个数比另一个数多(或少)百分之几的问题做好知识迁移的准备。
3. 让学生自主解决“实际造林比计划增加了百分之几”的问题。
(1)分析数量关系。
让学生自己尝试把数量关系用线段图表示出来。
让学生说说是怎样理解“实际造林比原计划增加百分之几”的。
通过讨论,让学生明确求实际造林比原计划增加百分之几,就是求实际造林比原计划增加的公顷数与原计划造林的公顷数相比的百分率,原计划造林的公顷数是单位“1”。
(2)确定解决问题的方法。
①让学生根据分析确定解决问题的方法,并列式计算出结果。
②让学生交流自己的方法,教师作适当的板书。
方法一:(14-12)÷12 = 2÷12≈0.167 = 16.7%
方法二: 14÷12 ≈1.167=116.7%
116.7% - 100% = 16.7%
问:还有其他方法吗?
③让学生总结,像这样的百分数问题有什么特点?解决它时要注意什么?
使学生明确:这是求一个数比另一个数增加百分之几的问题,它的解题思路和刚才同学们提出的第①、②个问题的分析思路基本相同,都要分清哪两个量在比较,谁是单位“1”,但这里比较的两个量中有一个条件没有直接告诉,必须先求出。
4. 改变问题。
师:如果问题是:计划造林比实际造林少百分之几?又怎么解决呢?
让学生列出算式,教师板书:
(14-12)÷ 14
5. 观察比较。
将例2的第一种算式与改变后的问题的解答算式相比较:
(14-12)÷12(14-12)÷14
师:不同点是什么?为什么除数不一样?
通过学生的讨论,再次强调两个问题中谁和谁比,谁是单位“1”。使学生体会到,用百分数解决问题和用分数解决问题一样要注意找准单位“1”。
6. 概括应用。
让学生读一读课本例2后面一段话,结合生活实际举例说一说“增加百分之几”、“减少百分之几”“节约百分之几”……等话的含义。
三、巩固练习
1. 提问:解决求一个数比另一个数多(或少)百分之几的问题,应注意什么?
2. 独立完成课本90页“做一做”的题目。
四、布置作业
课堂作业:练习二十二第1、第2题。
课外作业:练习二十二的第3、4题。
五、课堂总结反思
1. 学了这节课你还有什么疑问吗?
2. 能谈谈你的收获吗?
小学解决问题教案篇2
教师准备:ppt课件
教学过程
⊙回顾练习,导入新课
1.课件出示练习题:小红要写12个大字,已经写完了7个,还要写几个大字?
师:你从题目中知道了什么?要解决的问题是什么?怎样计算还要写几个大字?
2.学生独立思考并解答。
提问:怎样才能知道你的答案是否正确?
3.导入新课:今天,我们将继续学习解决问题。(板书课题)
设计意图:通过让学生运用已有的知识经验解决实际问题,丰富学生解决问题的经验,为本节课学习新知做好准备。
⊙解决含有多余条件的实际问题
1.课件出示教材20页例5。
师:仔细观察情境图,说说你从图中看到了什么,发现了哪些数学信息。
预设
生:有16人来踢球;现在来了9人;我们队踢进了4个。
师:问题是什么?
生:问题是还有几人没来。
2.选择有用的信息。
想一想:题目呈现的信息中,哪两个信息有联系?要求还有几人没来需要哪两个条件?
摆一摆:教师引导学生将已知条件和问题制成纸条,让学生把有联系的已知条件和问题摆放在一起,不用的已知条件放在一旁。
读一读:让学生将有联系的已知条件和问题完整地读一读。
师小结:“我们队踢进了4个。”这个条件在解决问题时没有用,是多余的条件。
3.解决问题。
(1)引导学生通过画图分析数量关系。
提问:你能把用文字表述的已知条件和问题改用画图的方式表示出来,让大家看得更清楚、更明白吗?
(学生动手画图,教师巡视指导)
(2)组织学生交流,说说自己的想法和图中各部分表示的意义。
(3)列式计算,解决问题。
提问:求还有几人没来,怎样列式呢?
生:16-9=7(人)。
提问:谁能说说算式中的16、9、7分别表示什么?
生:16表示踢球的总人数,9表示已经来的人数,7表示没来的人数。
4.回顾解决问题的步骤与策略,强化记忆。
(1)检验计算结果是否正确,学习检验方法。
提问:“还有7人没来”,解答正确吗?你用什么方法来检验呢?
预设
生1:没来的7人加上9人等于16人,解答正确。
生2:7+9=16(人)。
小结:用减法解决的问题,可以用加法来检验解答是否正确。
(2)回顾解决问题的一般步骤。
提问:请大家回顾一下我们刚才解决问题的过程,一共分为几步?
(生总结)
提问:是不是我们找到的信息在解决问题时都要用到呢?(不是)
小结:我们在解决问题时,一般要经历这样几个步骤:
①通过看图和文字信息,获取题目中的数学信息和要解决的问题;
②选择有用的信息解决问题;
③检验结果是否正确。
小学解决问题教案篇3
一、教学目标:
1、加深对反比例概念的理解,掌握运用比例知识解决实际问题的方法和思路,能用反比例知识解决有关问题。
2、提高学生对应用问题数量关系的分析能力和对正、反比例的判断能力。
二、 教学重点:用比例知识解决实际问题。
三、 教学难点:正确分析题中的数量关系,列出方程。
四、教学过程:
(一)、复习
1、成正比例和成反比例的量的判断。
2、用正比例解决问题的步骤。
一:找到题中不变的量;
二:根据不变的量写出关系式;
三:判断成什么比例;
四:列出比例式;
五:解比例。
(二)、探究新知
教学例5:一批书如果每包20本,要捆20包,如果每包30本,要捆多少包?
a.提出问题组织学生讨论:
① 问题中有哪两种量?
② 它们成什么比例关系?你是根据什么判断的?
③ 根据这样的比例关系,你能列出等式吗?
b. 根据反比例的意义列出方程并解方程。
根据比例的意义,学生独立完成,并在小组中交流。
学生汇报:
解:设要捆元。
30=20xx
= 36030
=12
答:要捆12包。
五.应用反馈 课件出示:
1. 教材60页做一做第2题。(单价乘数量等于总价,总价一定)
2. 课件上的练习题。
指名扮演,独立练习,集体订正。 巩固新知,训练解题能力。
六.课堂小结 通过这节课的学习,你有哪些收获?
小学解决问题教案篇4
第一课时
教学内容:
求稍微复杂的“求一个数是另一个数百分之几”的应用题(课本第90页的例2及“做一做”)。
教材分析:
这部分内容是求一个数是另一个数的百分之几问题的发展,是在求比一个数多(少)几分之几的基础上教学的。这种问题实际上还是求一个数是另一个数的百分之几的问题,只是有一个条件题目中没有直接给出,需要根据条件先算出来。解答求一个数多(少)百分之几的问题,可以加深学生对百分数的认识,提高用百分数解决实际问题的能力。
教学目标:
1、知识与技能
掌握稍复杂的求一个数比另一个数多(或少)百分之几的问题的解答方法。
2、过程与方法
通过学习,培养学生利用已有的基础知识,来探索解决新问题。
3、情感、态度与价值观
提高学生迁移类推和分析、解决问题的能力。
教学重点:
掌握解决此类问题的方法。
教学难点:
理解题中的数量关系。
导学过程
一、巩固复习
1、把下面各数化成百分数。
0.63 1.08 7 0.044
2、说说下面每个百分数的具体含义,是怎么求出来的?(哪两个数相比,把谁看作单位“1”)
(1)某种菜籽的出油率是36%。
(2)实际用电量占计划用电量的80%。
(3)李家今年荔枝产量是去年的120%。
二、授新课
1、根据数学信息提出问题:
出示例2的情境图,让学生根据图中提供的条件提出用百分数解决的问题。
(1)计划造林是实际造林的百分之几?
(2)实际造林是计划造林的百分之几?
(3)实际造林比计划造林增加百分之几?
(4)计划造林比实际造林少百分之几?
2、让学生先解决前两个问提。
解决这类问题要先弄清楚哪两个数相比,哪个数是单位“1”,哪一个数与单位“1”相比。
3、学生自主解决“实际造林比计划增加了百分之几”的问题。
(1)分析数量关系,让学生自己尝试着用线段图表示出来。
(2)让学生说说是怎样理解“实际造林比原计划增加百分之几”的?(求实际造林比原计划增加百分之几,就是求实际造林比原计划增加的公顷数与原计划造林的公顷数相比的百分率,原计划造林的公顷数是单位“1”。)
(3)明确解决问题的方法:让学生根据分析确定解决问题的方法,并列式计算出结果。
方法一:(14-12)÷12=2÷12≈0.167=16.7%
提问:14-12表示什么?再除以12表示什么?
方法二:14÷12≈1.167=116.7%
116.7%-100%=16.7%
提问:14÷12表示什么?再减去100%表示什么?
(4)小结解题方法:
像这样的百分数问题有什么特点?解决它时要注意什么?(这是求一个数比另一个数增加百分之几的问题,它的解题思路和直接求一个数是另个数的百分之几的问题的分析思路基本相同,都要分清哪两个量在比较,谁是单位“1”,但是这里比较的两个量中有一个条件没有直接告诉我们,必须先求出。)
(5)改变问题:问题如果是“计划造林比实际造林少百分之几?”,该怎么解决呢?
学生列出算式:(14-12)÷14
(再次强调两个问题中谁和谁比,谁是单位“1”。使学生体会到,用百分数解决问题和用分数解决问题一样要注意找准单位“1”。)
三、巩固练习
1、独立完成课本第90页“做一做”的题目。
2、练习二十二第1、2题。
四、布置作业
练习二十二第3、4题。
第二课时
教学内容:
教学稍微复杂的“求一个数的百分之几是多少”的应用题。(课本第93页例3和“做一做”)
教材分析:
这部分内容教学是求一个数的百分之几是多少的问题。这类问题实际上与求一个数的几分之几是多少的分数乘法问题类似,只是给出的条件以百分之几来表示。由于有相关的分数乘法问题的基础,所以这里只通过例3教学求比一个数多百分之几的数是多少的问题,其他的求一个数的百分之几是多少、求比一个数少百分之几的数是多少等问题则安排在习题中让学生尝试解决。
教学目标:
1、使学生掌握比一个数多(少)百分之几的应用题的数量关系和解题思路。并能正确地解答这类应用题。
2、感受数学与生活的联系,培养学生的应用意识和解决简单的实际问题的能力。
教学重点:
掌握比一个数多(少)百分之几的应用题的数量关系和解题思路。
教学难点:
正确、灵活地解答这类百分数应用题的实际问题。
教学过程:
一、巩固复习
1、出示复习题:学校图书室原有图书1400册,今年图书册数增加了。现在图书室有多少册图书?
2、学生找出这道题目的分率句,确定单位“1”,并根据数量关系列式:1400×(1+)
二、授新课
1、教学例3
(1)出示例题:学校图书室原有图书1400册,今年图书册数增加了12%。现在图书室有多少册图书?
(2)学生读题,找条件和问题,明确这道题是把谁看成单位“1”。
(3)引导思考:从“今年图书册数增加了12%”这句话中,你能知道些什么?
① 今年图书增加的部分是原有的12%。
② 今年图书的册数是原有的.120%。
(4)学生讨论后分小组交流,并独立列式计算:
方法一:1400×12%=168(册)
1400+168=1568(册)
提问:1400×12%表示什么?再加1400表示什么?
方法二:1400×(1+12%)
=1400×112%
=168(册)
提问:1+12%表示什么?再乘1400表示什么?
2、通过这道题的学习,你明白了什么?(求一个数的几分之几和求一个数的百分之几,都要用乘法计算)
3、巩固练习:完成p93“做一做”第1题。
三、巩固练习
1、补充练习。
(1)出示练习:
①油菜籽的出油率是42%。2100千克油菜籽可榨油多少千克?
②油菜籽的出油率是42%。一个榨油厂榨出油2100千克,用油菜籽多少千克?
(2)分析理解:
a、出油率是什么意思?这两道题有什么相同和不同?
b、第(1)题是求一个数的百分之几是多少,应用什么方法计算?第(2)题是已知一个数的百分之几求这个数,可以怎样解?
(3)学生独立列式解答。
2、学生做教科书练习二十二的第1、3、4题。
小学解决问题教案篇5
设计说明
?数学课程标准》提出的关于估算的学习目标是“能结合具体情境进行估算,并解释估算的过程”,要落实这一目标,教师首先要充分认识估算在日常生活和工作中的广泛应用,认识估算对学生数感的培养具有重要意义。在本课的设计中,首先创设情境,引出问题,让学生体会生活中许多问题的解答要用到除法估算来完成。然后让学生根据已有的估算经验,自己尝试着解决老师提出的问题,让学生对除法估算有一个建构的过程。紧接着让学生归纳除数是一位数的除法估算的一般方法,在此基础上让学生面对具体情境进行估算,通过对“每天的住宿费大约是多少?”和“多少个纸箱能装下?”这两个问题的分析,培养学生灵活解决问题的能力。
课前准备 教师准备 ppt课件
教学过程
⊙激趣导入
师:同学们,你们和父母外出旅游时留心在宾馆每天的住宿费大约是多少钱了吗?
1、课件出示教材29页例8。 思考: (1)从例8中你知道了哪些数学信息?要解决什么问题? (2)问题中的“大约”是什么意思? (生根据已有的经验自由发言,大约就是大概的意思,结果要进行估算,得数不能用“=”连接,要用“≈”连接) (3)鼓励学生分析题意,独立列出算式,并说一说这样列式的理由。(267÷3) 师强调说明:问题中“每天的住宿费大约是多少钱?”不需要算出准确结果,只需要进行估算,求出近似值就可以了。
2.揭示课题。 这样的问题该怎么解决呢?这节课我们就应用除法的估算来解决问题。(板书课题)
⊙自主预习,探究算法
1.引发思考。 师:你会估算267÷3的结果吗?把你的想法和同桌互相交流一下。 (1)鼓励学生大胆地说出自己的想法,根据学生的汇报进行板书。 ①267≈300 300÷3=100(元) 267÷3≈100(元) 答:每天的住宿费大约是100元。 ②267≈270 270÷3=90(元) 267÷3≈90(元) 答:每天的住宿费大约是90元。(看除数,想口诀) (2)引导学生观察对比,小组讨论两位同学的解答合理吗?为什么? ①因为不需要算出准确的钱数,所以两种结果都是合理的。 ②第二种方法估算的结果更精确一些,准确结果应该比90少,比80多。 (3)总结估算的方法。(课件出示) 除数是一位数的除法估算,一般先把被除数看作与它接近的整十、整百、几百几十、几千几百的数,除数不变,再口算出结果。 (4)明确:解决同一个问题,如果有不同的方法,只要合理就可以采用。 设计意图:通过引导和探究使学生明白,估算时要看除数,想口诀,找到和被除数最接近的整十、整百、几百几十或几千几百的数,选择合理的方法来解决实际问题。
2.解决问题。(课件出示教材30页例9) (1)引导学生分析题中的数量关系,说出题中的已知条件和要求的问题。 (2)问题中的“够装”是什么意思? (3)小组合作交流,说出自己的想法,根据学生的汇报进行板书。 ①182≈180,182÷8>20,需要的纸箱肯定超过20个,所以18个纸箱装不下182个菠萝。 ②18≈20,20×8=160(个),20个纸箱只能装160个,所以18个纸箱肯定装不下。 (4)组织学生对以上的估算过程和方法进行比较。(课件出示) 第一种方法与例8的把被除数看作和它接近的几百几十数的方法一样;第二种方法是把纸箱数看成和它接近的整十数,再乘每箱装的菠萝个数,然后和菠萝总数进行比较。 设计意图:教学中,尽可能地为学生创造更多的估算空间和交流机会,让学生在各种活动中自主探索除数是一位数的除法的估算方法,提高估算能力。
⊙巩固练习
1.完成教材30页例9下面的问题:多少个纸箱才能装下?(选择自己喜欢的方法来解答)
2.完成教材31页1题。 教师引导学生掌握估算的一般方法,提高估算能力。
3.完成教材31页2题。 引导学生分析题意,感受估算在实际生活中的应用。
⊙全课总结 通过今天的学习,同学们只要根据实际情况,选择合适的估算方法,就可以把学到的数学知识更好地应用到生活中。
小学解决问题教案篇6
教学过程:
一、积累铺垫
1.引入:刚才的游戏有意思吗?我们再来玩个游戏好吗?(课前游戏:你来比划我来猜)
2.要求:刚刚我们根据比划来猜测是什么事物,现在请同学们在纸上画出题目的意思。
3.出示第一关:中山路小学原有一个花圃是长方形,长4米,宽3米。校园扩建时,长增加了2米。(1)学生画图(2)对比交流
4.从图中你能求出什么?
二、初步感知
1.出示第二关:中山路小学原来操场是一个长方形,长40米。在扩建校园时,长增加了20米,这样操场面积就增加了600平方米。原来操场面积是多少平方米?。
2.审题激需:你能想个办法让大部分同学都能理解题意顺利闯关呢?(画图)
3.看谁能把题目中的条件和问题都在图中表示出来?(1)学生画图, (2)对比交流:
4.现在图有了,你能根据图来求出原来操场的面积吗?
(1)学生尝试,教师巡视。(2)讨论交流:
5.小结:从开始审题我们觉得有点困难,至现在大部分同学都能做出来,你有什么感受?(画图是解决问题的好办法,画图能帮助我们思考……)
三、再次体验
1.出示第三关:中山路小学原来有一个宽30米的前操场。因为要造“牡丹公寓”,宽减少了10米,这样前操场面积就减少了400平方米。现在前操场的面积是多少平方米?
2.审题后问:长方形操场是怎样变化的?(宽减少)你能把宽减少在图上表示出来吗?
3.学生画图,尝试解答后交流:把题意表示清楚了吗?能指着图说一说自己是怎么想的吗?(可能会有几种方法,重点指出宽减少了,长不变,减少的长方形的长就是现在长方形的长。)
4.小结揭题:我们顺利闯过了第三关,你能谈谈画图对我们解决问题有什么帮助吗?(清楚地找到数量之间的关系)这就是我们今天学习的“解决问题的策略”之一画图(板书)。
四、深入体验
(一)第四关:
1.引入:应用画图的策略,我们来闯第四关。
2.分层出示:
(1)中山路小学原来有一个长方形操场,长40米,宽30米。扩建校园时,操场长增加了20米。这个操场面积增加了多少平方米?(学生口答,再出图列式)
(2)中山路小学原来有一个长方形操场,长40米,宽30米。扩建校园时,操场宽增加了15米。这个操场面积增加了多少平方米?(学生口答,再出图列式)
(3)中山路小学原来有一个长方形操场,长40米,宽30米。扩建校园时,操场长增加了20米,宽增加了15米。这个操场面积增加了多少平方米?
学生猜测。先独立画图,再讨论验证。(得出不是增加1200平方米,应该大于1200平方米)
到底增加了多少?学生解答后交流。(交流“整体”和“分块”两种思路)
3.反思小结:从用经验猜测,到画图验证,最后到解决问题,你有什么启发吗?
(二)第五关:
1.引入:第四关我们都闯过了,下面我们要挑战——第五关!
2.出示第五关:中山路小学原来有一个长方形操场。如果这个操场的长增加20米,或者宽增加15米,面积都比原来增加600平方米。你知道原来操场的面积是多少平方米吗?
(1)审题后问:与第四关有什么区别?(一个是“同时”,一个是“或者”)
(2)学生画图解答后交流:(让学生指了图来说思路。重点交流长增加出来的长方形的长就是原来长方形的宽;宽增加出来的长方形的宽就是原来长方形的长)
五、全课总结
今天学习了“解决问题的策略”,你有什么收获?
会计实习心得体会最新模板相关文章: