教案是教师为了保证上课进度预先起草的文字材料,教案在制定的过程中,老师们都能清楚的知道接下来的教学任务,丫丫文章网小编今天就为您带来了初中数学教案优秀教案6篇,相信一定会对你有所帮助。
初中数学教案优秀教案篇1
一、教学目的:
1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;
2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
二、重点、难点
1.教学重点:菱形的两个判定方法.
2.教学难点:判定方法的证明方法及运用.
三、例题的意图分析
本节课安排了两个例题,其中例1是教材p109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算.这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成.程度好一些的班级,可以选讲例3.
四、课堂引入
1.复习
(1)菱形的定义:一组邻边相等的平行四边形;
(2)菱形的性质1菱形的四条边都相等;
性质2菱形的对角线互相平分,并且每条对角线平分一组对角;
(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)
2.【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?
3.【探究】(教材p109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?
通过演示,容易得到:
菱形判定方法1对角线互相垂直的平行四边形是菱形.
注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.
通过教材p109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:
菱形判定方法2四边都相等的四边形是菱形.
五、例习题分析
例1(教材p109的例3)略
例2(补充)已知:如图abcd的对角线ac的垂直平分线与边ad、bc分别交于e、f.
求证:四边形afce是菱形.
证明:∵四边形abcd是平行四边形,
∴ae∥fc.
∴∠1=∠2.
又∠aoe=∠cof,ao=co,
∴△aoe≌△cof.
∴eo=fo.
∴四边形afce是平行四边形.
又ef⊥ac,
∴afce是菱形(对角线互相垂直的平行四边形是菱形).
※例3(选讲)已知:如图,△abc中,∠acb=90°,be平分∠abc,cd⊥ab与d,eh⊥ab于h,cd交be于f.
求证:四边形cehf为菱形.
略证:易证cf∥eh,ce=eh,在rt△bce中,∠cbe+∠ceb=90°,在rt△bdf中,∠dbf+∠dfb=90°,因为∠cbe=∠dbf,∠cfe=∠dfb,所以∠ceb=∠cfe,所以ce=cf.
所以,cf=ce=eh,cf∥eh,所以四边形cehf为菱形.
六、随堂练习
1.填空:
(1)对角线互相平分的四边形是;
(2)对角线互相垂直平分的四边形是________;
(3)对角线相等且互相平分的四边形是________;
(4)两组对边分别平行,且对角线的四边形是菱形.
2.画一个菱形,使它的两条对角线长分别为6cm、8cm.
3.如图,o是矩形abcd的对角线的交点,de∥ac,ce∥bd,de和ce相交于e,求证:四边形oced是菱形。
七、课后练习
1.下列条件中,能判定四边形是菱形的是()
(a)两条对角线相等(b)两条对角线互相垂直
(c)两条对角线相等且互相垂直(d)两条对角线互相垂直平分
2.已知:如图,m是等腰三角形abc底边bc上的中点,dm⊥ab,ef⊥ab,me⊥ac,dg⊥ac.求证:四边形mend是菱形.
3.做一做:
设计一个由菱形组成的花边图案.花边的长为15cm,宽为4cm,由有一条对角线在同一条直线上的四个菱形组成,前一个菱形对角线的交点,是后一个菱形的一个顶点.画出花边图形.
初中数学教案优秀教案篇2
1.掌握一元二次方程的根与系数的关系并会初步应用.
2.培养学生分析、观察、归纳的能力和推理论证的能力.
3.渗透由特殊到一般,再由一般到特殊的认识事物的规律.
4.培养学生去发现规律的积极性及勇于探索的精神.
重点
根与系数的关系及其推导
难点
正确理解根与系数的关系.一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系.
一、复习引入
1.已知方程x2-ax-3a=0的一个根是6,则求a及另一个根的值.
2.由上题可知一元二次方程的系数与根有着密切的关系.其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?
3.由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.观察两式右边,分母相同,分子是-b+b2-4ac与-b-b2-4ac.两根之间通过什么计算才能得到更简洁的关系?
二、探索新知
解下列方程,并填写表格:
方程 x1 x2 x1+x2 x1•x2
x2-2x=0
x2+3x-4=0
x2-5x+6=0
观察上面的表格,你能得到什么结论?
(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q之间有什么关系?
(2)关于x的方程ax2+bx+c=0(a≠0)的两根x1,x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?
解下列方程,并填写表格:
方程 x1 x2 x1+x2 x1•x2
2x2-7x-4=0
3x2+2x-5=0
5x2-17x+6=0
小结:根与系数关系:
(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=-p,x1•x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零.)
(2)形如ax2+bx+c=0(a≠0)的方程,可以先将二次项系数化为1,再利用上面的结论.
即:对于方程ax2+bx+c=0(a≠0)
∵a≠0,∴x2+bax+ca=0
∴x1+x2=-ba,x1•x2=ca
(可以利用求根公式给出证明)
例1不解方程,写出下列方程的两根和与两根积:
(1)x2-3x-1=0(2)2x2+3x-5=0
(3)13x2-2x=0 (4)2x2+6x=3
(5)x2-1=0 (6)x2-2x+1=0
例2不解方程,检验下列方程的解是否正确?
(1)x2-22x+1=0 (x1=2+1,x2=2-1)
(2)2x2-3x-8=0 (x1=7+734,x2=5-734)
例3已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几种方法?)
例4已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值.
变式一:已知方程x2-2kx-9=0的两根互为相反数,求k;
变式二:已知方程2x2-5x+k=0的两根互为倒数,求k.
三、课堂小结
1.根与系数的关系.
2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零.
四、作业布置
1.不解方程,写出下列方程的两根和与两根积.
(1)x2-5x-3=0(2)9x+2=x2(3)6x2-3x+2=0
(4)3x2+x+1=0
2.已知方程x2-3x+m=0的一个根为1,求另一根及m的值.
3.已知方程x2+bx+6=0的一个根为-2,求另一根及b的值
初中数学教案优秀教案篇3
教学目标:
1、知识与技能:通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。
2、过程与方法:通过观察,归纳一元一次方程的概念。
3、情感与态度:体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决。
教学重点:
归纳一元次方程的概念
教学难点:
感受方程作为刻画现实世界有效模型的意义.
教学过程:
一、情景导入:
我能猜出你们的年龄,相信吗?
只要任何一个同学回答我一个问题,我就能马上猜到他的年龄是多少岁,我们来试试吧.
问:你的年龄乘以2加3等于多少?
学生说出结果,教师猜测年龄,并问:你们知道我是怎么做的吗?
学生讨论并回答
二、知识探究:
1、方程的教学(投影演示)
小彬和小明也在进行猜年龄游戏,我们来看一看。
找出这道题中的等量关系,列出方程.
大家观察,这两个式子有什么特点。
讨论并回答:什么是方程?方程有哪些特点?
2、判断下列式子是不是方程?
(1)x+2=3(是)(2)x+3y=6(是)
(3)3m-6(不是)(4)1+2=3(不是)
(5)x+3>5(不是)(6)y-12=5(是)
三、合作交流
1、如果告诉我们一些实际生活中的问题,大家能够自己列出方程吗?(投影演示)
情景一:小颖种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高约15厘米,大约几周后树苗长高到1米?
你能找出题中的等量关系吗?怎样列方程?由此题你们想到了些什么?
情景二:第五次全国人口普查统计数据(20xx年3月28日新华社公布)
截至20xx年11月1日0时,全国每10万人中具有大学文化程度的人数为3611人,比1990年7月1日0时增长了153.94%
1990年6月底每10万人中约有多少人具有大学文化程度?情景三:西湖中学的体育场的足球场,其周长为200米,长和宽之差为12米,这个足球场的长和宽分别是多少米?
下面是刚才根据几道情景题所列的方程,分析下列方程有何共同点?
2x–5=21
40+15x=100
x(1+153.94﹪)=3611
2[x+(x+12)]=200
2[y+(y–12)]=200
在一个方程中,只含有一个未知数x(元),并且未知数的指数是1(次),这样的方程叫一元一次方程。
问:大家刚才都已经自己列出了方程,那个同学能够说一下你是怎样列出方程的,列方程应该分为那几步呢?
生:分组讨论,回答列方程的步骤(1)找等量关系(2)设未知数(3)列方程
四、随堂练习
1、投影趣味习题,
2、做一做
下面有两道题,请选做一题。
(1)、请根据方程2x+3=21自己设计一道有实际背景的应用题。
(2)、发挥你的想象,用自己的年龄编一道应用题,并列出方程。
五、课堂小节
1、这节课你学到了什么?
2、这节课给你印象最深的是什么?
六、作业:
分组布置
初中数学教案优秀教案篇4
?等式与方程》教案
教学目标
1、学生掌握方程的定义以及等式与方程的区别;
2、使学生掌握方程的解的定义,并且能某个值是否为指定方程的解。
教学重点
检验方程的解的方法
教学难点
区分等式与方程;等式与恒等式;恒等式与方程。
版面设计
方程与方程的解
一、等式与恒等式:
二、方程与整式方程:
三、方程的解与方程的根:
教学设计
一、复习引入:
⑴猜年龄:
将你的年龄乘以2再减去5,你的得数是多少?如果是21,我就能猜出你的年龄是13。
⑵找规律:
如果设小明的年龄为x岁,那么乘以2再减去5就是2x-5,所以得到方程(equation):2x-5=21
二、新课传授:
1.等式与恒等式:
①等式:
像1+2=3,5.3-(-1.2)=6.5,x+2x=3x,x+3=5等这样用等号=来表示相等关系的式子,叫做等式。
等式左边的式子叫做等式的左边;
等式右边的式子叫做等式的右边;
等式的一般形式是:a=b
②恒等式:
像1+2=3,5.3-(-1.2)=6.5,x+2x=3x,a+b=b+a等这样等号两边的值永远相等的式子叫做恒等式。
2.方程与整式方程:
①方程:
这种含有未知数的等式叫做方程。
②整式方程:
方程的两边都是整式时,称为整式方程。
?练习】:课后1、2两题(指定学生口答)
1.方程的解与方程的根:
①方程的解:
能使方程左、右两边的值相等的未知数的值叫做方程的解;
②一元方程:
只含有一个未知数的方程称为一元方程;
一元方程的解也叫做方程的根。
2.一元一次方程:
只含有一个未知数,并且未知数的次数是1的整式方程叫做一元一次方程。
例检验下列各数是不是方程7x+1=10-2x的解:
⑴x=1;⑵x=-2。
解:⑴将x=1分别代入方程的左、右两边,得
左边=71+1=8,
右边=10-21=8,
∵左边=右边,
x=1是方程7x+1=10-2x的解。
⑵将x=-2分别代入方程的左、右两边,得
左边=7(-2)+1=-13,
右边=10-2(-2)=14,
∵左边右边,
x=-2不是方程7x+1=10-2x的解。
三、作业:
课后习题
同步练习
初中数学教案优秀教案篇5
一、教学目标:
1、知识目标:
①能准确理解绝对值的几何意义和代数意义。
②能准确熟练地求一个有理数的绝对值。
③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。
2、能力目标:
①初步培养学生观察、分析、归纳和概括的思维能力。
②初步培养学生由抽象到具体再到抽象的思维能力。
3、情感目标:
①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。
②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。
二、教学重点和难点
教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。
教学难点:绝对值定义的得出、意义的理解及求一个负数的绝对值。
三、教学方法
启发引导式、讨论式和谈话法
四、教学过程
(一)复习提问
问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?
(二)新授
1、引入
结合教材p63图2-11和复习问题,讲解6与-6的绝对值的意义。
2、数a的绝对值的意义
①几何意义
一个数a的绝对值就是数轴上表示数a的点到原点的距离。数a的绝对值记作|a|.
举例说明数a的绝对值的几何意义。(按教材p63的倒数第二段进行讲解。)
强调:表示0的点与原点的距离是0,所以|0|=0.
指出:表示“距离”的数是非负数,所以绝对值是一个非负数。
②代数意义
把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的`相反数,0的绝对值是0.
用字母a表示数,则绝对值的代数意义可以表示为:
指出:绝对值的代数定义可以作为求一个数的绝对值的方法。
3、例题精讲
例1.求8,-8的绝对值。
按教材方法讲解。
例2.计算:|2.5|+|-3|-|-3|.
解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3
例3.已知一个数的绝对值等于2,求这个数。
解:∵|2|=2,|-2|=2
∴这个数是2或-2.
五、巩固练习
练习一:教材p641、2,p66习题2.4a组1、2.
练习二:
1、绝对值小于4的整数是____.
2、绝对值最小的数是____.
已知|2x-1|+|y-2|=0,求代数式3x2y的值。
六、归纳小结
本节课从几何与代数两个方面说明了绝对值的意义,由绝对值的意义可知,任何数的绝对值都是非负数。绝对值的代数意义可以作为求一个数的绝对值的方法。
七、布置作业
教材p66习题2.4a组3、4、5.
初中数学教案优秀教案篇6
初中数学新课程已实施了多年,已逐步走入了新课程的轨道。教师们更新理念,积极探索、勇于实验,数学课堂教学发生了可喜的变化:如学生主动地开展观察、实验、猜测、验证、推理与交流等数学活动。在新课程改革的实施过程中,一线教师作为课程的建设者、教学的研究者在课堂教学探究活动中面对学生的变化、课程变化、教学形式的变化,考试变化中有着太多的疑问、太多的困惑。这几年来我一直从事初中数学教学工作,现将我在新课程改革实验中的一些尝试、实践和与其他教师交流过程中的一些体会,产生如下一些反思:
一、教学中的可喜变化
1.学生更喜欢数学了
新课程重视学生创新精神和实践能力培养,比传统教材关注学生的兴趣与经验,更关注学生的现实世界,将教学目标转化为学生的“自我需求”,密切与学生生活及现代社会、科技发展相联系,引导学生亲身体验主动参与、亲身实践、独立思考、合作探究。课堂呈现勃勃生机,教学方式灵活多样,师生之间平等交流、共同学习的民主关系逐步形成,学生更喜欢数学了。
2.教师面临新的机遇与挑战
新一轮的课程改革对每位教师来说,既是一种严峻的挑战,也是不可多得的一次机遇,教师是新课程的开发者,是“用教科书教,而不是教教科书”,重新认识、定位自己的角色。教师们迫切更新理念,提高整体素质,重研讨、重实践、重反思、重互助的新型教研氛围蔚然成风,新课改有力促进了教师的专业成长。
二、教学中的困惑与思考
1.课堂变“集市”,教学过于追求“情境化”
教学情境的创设是引发学生主动学习的启动环节,根据教学目标和教学内容有目的此创设教学环境,不仅可使学生掌握知识、技能,更能激活学生的问题意识,生动形象的数学问题与认知结构中的经验发生联系。部分教师在教学中过于追求情境化,“上游乐场分组玩”、“上街买东西”,单纯用“生活化”、“活动情趣化”冲淡了“数学味”,忽略了数学本身具有的魅力。新教材提倡设置问题情境、活动情境、故事情境、竞争情境等,但教师不能简单化机械理解新课程理念和教学方法。“境由心造”——富于时代气息的情境的设置只有在符合学生的心理特点及认知规律的前提下,学生才能学会从数学角度观察事物和思考问题,真正由情感体验激发有效的数学认知活动。
2.教师由“独奏者”过渡到“伴奏者”角色错位
学生是学习的主体,是学习的主人,教师的教学方式发生了变化。
有些教师常讲“我们要蹲下来与学生对话”,如果是平等的,有必要蹲下来吗?部分教师常重教案的精心设计,注重从如何教的层面考虑,照“案”宣科时,更关注的是教学进度和当堂的教学效果,忽略了学生思维的发展和“做数学”的过程,置学习过程中的“想不到”于不顾,只是形式上的牵着学生去合作、探究,不愿放手让学生去体验问题、发现问题和提出问题,淡化探索,重模仿,教师实质上还是“解题的指导者”,走出了新课程倡导的学生是探索知识的“主动建构者”的意境。
3.分组合作学习、讨论“热闹”充当新课改“标签”
学生是否积极主动参与学习活动,乐于与他人合作交流是新课程教学中评价一个学生的重要指标,但评价要定性与定量相结合,尤其是定性部分更要关注学生是否真的有效参与、独立思考,真正获得解决问题的策略与方法。部分教师刻意追求上课气氛热闹,笑声越多越好,小组讨论流于形式,讨论问题数学思维层次低,指向不明,为讨论而讨论,以问代讲,“双向交流”太多太滥,教学出现盲目性、随意性,教学过程匆忙零乱,缺乏整体性。课堂教学贯穿新课程理念必须重视“三基”:基础知识、基本技能和学科基本思想方法,重视教学目标多元化:知识与能力,过程与方法,情感、态度和价值观。
4.电脑代替“人脑”,鼠标代替粉笔
计算机辅助教学作为现代化教学手段能处理好静与动、局部与整体、快与慢的关系,适时选取有探索意义的课件和内容能调动学生的学习情绪,提高兴趣,扩大知识的信息量,启迪思维,提高效率。有的教师整天忙于制作的课件只是课本搬家,替代了小黑板,有的数学课应用多媒体手段,视听图画晃动频繁,学生眼花缭乱,仅仅让五彩缤纷的图画增强学生的感官刺激,课件只是一种点缀,不利于学生思维能力培养和理性思考。教师应把现代化教学手段与传统的教学手段(教具、学具、黑板)结合起来,优势互补方能使教学手段整体优化。
5.“课堂教学反思”≠“反思型教师”
常有教师专心课堂教学后记,把教师本人的教学实施过程与教学设计比较,描述课堂中出现的异常与教学目标的状况差异以及今后需改善之处的一些经验与教训,把课后体会混同于教学反思,其实这只是教学反思的一个方面,有专家提出“反思就是行为主体对自身、对实践活动过程及相关的主体认识的再认识”。可喜的是不少教师以研究者的心态置身于教学情境中。尚需明确的是:真正反思,不仅要对我们采取的那些教育或教学行为进行批判性的思考,而且要对支配这些行为的潜在的教学观念进行重新认识。本次课改也是教育思想的“启蒙运动”,教师不再是“习题的讲解者”,作为课程的建设者的教师案桌上除了数学习题集,还应添置的是理念和理论。
6.评价的多样化与呈现形式与中考指向“短路”
新课标指出:“评价的方式应多样化,可将考试、课题活动、撰写论文、小组活动、自我评价及日常观察等多种方法结合”。数学学习评价多样化,评价形式要求通过评分+评语形式呈现,而现实的升学压力和功利性,教师忽视了对学生基本素养的培养,“考什么,教什么”,“怎么考,怎么教”,“不考,不教”成为课堂主旋律,更关注中考命题走向、题型分值,而对全新的中考命题新框架、新思路、新亮点,部分教师只能“摸着石头过河”,缺泛细致深入的专业化研究。
随着20__年新课程标准的颁布,一轮新的课改又要开始了。我知道,课改的精神、理念要转化为实践不是一朝一夕就能完成的,精研、精思,方能晓其义,识其神。深入开展对新课程的研讨交流,让课堂教学与研究“共生互补”的同时,不仅反思自己的课堂教学行为,而且要从主体认识上找根源,树立“问题意识”,积极实践,找差距,找问题,找不足,进一步提高自身的教育教学素质,真正走进初中数学新课程,为实现新课程的理想而努力。
会计实习心得体会最新模板相关文章: