学生的能力差异是一个关键考虑因素,教师需要调整教案,以满足各种学生的需求,教案可以包括课程中的跨学科内容,以促进综合性学习,下面是丫丫文章网小编为您分享的植树问题教案7篇,感谢您的参阅。
植树问题教案篇1
教学过程:
教学内容:
教学目标:
1、通过猜测、试验、验证等数学探究活动,使学生初步体会两端都栽的植树问题的规律。
2、引导学生构建数学模型,解决实际生活中的有关问题。
3、培养学生通过“化繁为简”从简单问题中探索规律,找出解决问题的有效方法的能力,初步培养学生的模型思想和化归思想。
教学重点:发现并理解两端都栽的植树问题中间隔数与棵树的规律。
教学难点:运用“植树问题”的解题思想解决生活中的实际问题。
教学准备:课件、白纸
教学过程:
一、情境出示,设疑激趣
教师:哪位同学知道我们国家设立的植树节是在哪一天?(3月12日)在这一天的植树活动中,遇到了这样一个问题。(课件出示问题)
例1:同学们在全长100 m的小路一边植树,每隔5 m栽一棵(两端要栽)。一共要栽多少棵树?
教师:你能利用所学的知识解决问题吗?(板书)你认为哪一个结果是正确的?
【设计意图】
直接出示例题的情境,通过学生的尝试解答,既是对教学起点的了解,又利用两种不同的结果设置疑问,激发了学生探求新知的热情。
二、经历过程,感受方法
教师:可以用怎样的方法进行检验呢?实践是检验真理的唯一标准,虽然我们不能去户外植树,但是我们可以在草稿本上画一画。遇到了什么困难?
预设:100 m太长了,不太好画。(追问:那我们可以怎么办?)
学生:可以先用简单的数试一试。(课件出示)
【设计意图】
使学生经历分析思考的整个过程,感受“猜测──验证”的学习方法。在实际操作中发现问题有助于激发学生的思考,从而深刻地体会“从简单事例中发现规律,并利用此规律解决较复杂问题”的数学思想。
三、探索实践,建立模型
教师:先看看20 m的距离,在两端都栽的情况下可以栽几棵树。实物投影或课件出示:教师:说说你是怎么想的?预设:20÷5=4,20 m被平均分成4段,因为两端要栽,所以要栽5棵树。
教师:再画一画,25 m可以栽几棵树?(学生操作)谁来说说你的想法?
预设:25÷5=5,就是把25 m平均分成了5段,因为两端都要栽,所以要栽6棵树。还可以这样画:这里的蓝色线段表示什么?(间隔数)红色线段呢?(植树棵数)
(根据学生回答,教师在课件上输入数据)你发现了什么规律?
预设:棵数要比间隔数多1。(追问:可以用怎样的一个式子表示?)棵数=间隔数+1。教师:谁能说说为什么要“+1”?(因为两端都要栽,所以栽树的棵树比间隔数多1。)你能用发现的规律解决开头的问题吗?(指名回答,分析讲解)
教师:回顾这个问题的解答过程,说说你的想法。
归纳小结:在解决较复杂或数据较大的问题时,可以先从简单数据出发得出规律,然后将规律运用于复杂问题进行解决。
【设计意图】
“画示意图──抽象出线段图──不画图”的教学过程,体现了从具体到抽象、从特殊到一般的设计理念,也正是在这一进程中,通过积极有效的教学活动,使学生建立起“一条线段两端都栽”这类植树问题的数学模型。
四、利用新知,解决问题
教师:根据刚才学到的知识,还可以解决许多生活中的问题。(课件出示问题)
1、在一条全长2 km的街道两旁安装路灯(两端也要安装),每隔50 m安一盏。一共要安装多少盏路灯?
教师:读完这个题目,你觉得有哪些地方需要特别引起注意?
预设1:单位不统一,要先进行转化再计算。
预设2:两旁。(追问:表示什么?)就是两边。你能通过画图的方法表示出“两旁”吗?在计算时该怎样体现?(先算出一边的路灯的数量,再乘以2。)
学生练习,指名回答。
2 km=20xx m(20xx÷50+1)×2=82(盏)
答:一共要安装82盏路灯。
教师:20xx÷50算的是什么?(间隔数)“+1”说明了什么?(两端都要安装)
2、马路一边栽了25棵梧桐树。如果每两棵梧桐树中间栽一棵银杏树,一共要栽多少棵?教师:仔细读题,认真思考,说说你对这个题目的理解。
引导得出:要求一共栽多少棵银杏树,实际就是求梧桐树的`间隔数。由“棵数=间隔数+1”可得“间隔数=棵数—1”。
25—1=24(棵)
答:一共要栽24棵银杏树。
教师:可以用怎样的方法验证结果是否正确?(可以先用比较简单的例子,通过画线段图的方法进行验证)和这题有关的简单的例子,我们只要张开一只手。五个手指相当于题目中的?(梧桐树)每两个手指之间栽一棵(银杏树),可以栽几棵?你还有其他的方法吗?
【设计意图】
练习中的实际问题,相比例题有一些变化,对于学生的理解能力提出了更高的要求。第1题用画图的方法直观地表示出“两旁”,解决了算式中为什么要“×2”的问题;第2题先让学生思考,说说自己的理解,验证的环节既是对方法的回顾,又体现了数学的趣味性。
五、逆向思考,拓展新知
园林工人沿一条笔直的公路一侧植树,每隔6 m种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?
教师:读题并思考,要求“从第1棵到最后一棵的距离”就是求什么?(路长)跟例题相比,有什么不同?
预设:例题是知道了路长求栽树的棵数,这题是知道了栽树的棵数,求路线长度。教师追问:该怎样解答呢?试一试,并说说你的思路。
(36—1)×6=210(m)
答:从第1棵到最后一棵的距离是210 m。
教师:“36—1”算的是什么?(间隔数)再根据“间隔数×间隔距离=路长”计算。
【设计意图】
通过变式练习,加深学生对例题中发现的规律的理解。该题是植树问题数学模型的逆向应用,有了前一题“间隔数=棵数—1”的知识为基础,学生应该能比较容易地解决这一问题。对于学习有困难的同学,也可引导他们用画线段图的方法解答。
六、回顾思考,全课总结
教师:通过这一节的学习,你有什么收获?跟大家交流一下。
根据学生回答,强调:
1、解决两端都要栽的植树问题的数学模型:棵数=间隔数+1。
2、当遇到较为复杂的数学问题时,可以先从简单的事例中发现规律,然后应用找到的规律来解决原来的问题。
【板书设计】
植树问题(两端要栽)总长÷间距=间隔数间隔数+1=棵数100÷25+1=21(棵)
植树问题教案篇2
教前分析:
1、教材分析:教材选取了在学校门前的一条小路一旁植树的素材,探索棵树和间隔数的关系,引导学生发现规律,有利于学生感受到数学来源于生活,从而产生亲切感,促使学生借助已有的生活经验自主探索规律。教材在编写时,不仅关注所选素材,而且在解决问题的方法上也注重了学生已有生活经验的利用。在学生对生活实际理解的基础上,感受到在一条直线上植树时,会有三种不同的情况:两端都栽、一端不载、两端都不栽;并在生活经验的基础上,借助线段图理解。
2、学情分析:数学学习的过程实际上就是一个对有关素材的规律理解、把握,并形成认识的过程。间隔现象的规律是生活中普遍存在的,学生都接触过,而且难度不大,有利于学生自主经历探究规律的过程,体会探究的方法,提高思维水平,感受数学的价值。但是借助一一对应的方法理解间隔数+1=棵数的过程中发现学生难以理解。
3、自我剖析:自己教龄3年,曾任教五年级数学和三年级数学。今年第一次任教一年级教学。从事高年级教学时发现基础薄弱学生存在的问题,因此更加重视一年级学生的基础教学。理解算理帮助学生内化尤为重要,特别关注计算能力培养。个人对数学学科比较热爱,喜欢钻研,积极参加各级各类数学教研活动和听评课活动。
教学目标:
1、知识目标:经历将实际问题抽象出植树问题模型的过程,掌握种树棵树与间隔数之间的关系。
2、能力目标:会灵活应用植树问题的模型解决一些相关的实际问题,培养学生的应用意识和解决实际问题的能力。感悟寻找规律,构建数学模型是解决实际问题的重要方法之一。
3、情感目标:培养学生保护环境的意识。
教学要点:
1、重点:理解种树棵树与间隔数之间的关系。
2、难点:灵活应用发现的规律解决一些相关的实际问题。
学习方法:
动手操作,合作交流
教学具准备:
课件、剪纸(小路、小树、房子)、板书用的字条
教学设计:
课前谈话:
人有两件宝,双手和大脑。双手会做工,大脑会思考。希望这节课同学们开动大脑积极思考,勇敢举手、大胆发言。
一、创设情境,导入新课
师:同学们喜欢猜谜语吗?老师出一个谜语,考考大家。
两个小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。你们猜出来了吗?
[设计意图:“猜谜”是中国传统文化之一,这里采用猜谜语不仅能够引导学生主动思考,还能调动学生学习的积极性,为接下来的知识学习打下良好的基础]
师:同学们真聪明。
师:我们的手不仅能写会算,在这其中还隐藏着许多的数学知识。
请同学们伸出你的左手张开五指,数数手指之间有几个空?
生答:4个,这个空我们在数学中把它叫做间隔。
师:老师要考考同学们的眼力。四根手指之间有几个间隔?
生答3个
师:两根手指有几个间隔?
生答:1
师:同学们的小眼睛真亮,反应真快!接下来同学们活动一下你的小手,请同学们伸出你的左手,老师说你来做。2个间隔,4个间隔,三个间隔。
师:同学们反应真迅速!其实在生活中和间隔随处可见,同学们能不能举出例子呀!
师:你有一双善于发现的眼睛。
师:老师也收集了一些,请看大屏幕。
[设计意图:引出“间隔”,将抽象的概念具体化。同时渗透了间隔与间隔数之间的关系。让学生将数学与生活紧密的联系在一起。]
师:在数学中,把和间隔有关的问题称为植树问题。
师:今天这节课我们就来一起研究植树问题,(板书课题植树问题)。同学们有信心学好吗?
二、探究新知
光明小学为了美化校园环境,计划在一条长20米的小路一边植树。想请同学们当小设计师。我们一起去看看吧!
设计意图:在活动中学生实现了参与环境保护的愿望,提高了环保意识,增强了热爱环境的情感;同时也深化了数学课本上有关知识的学习。
一)动手设计并交流
1、请同学们仔细观察,你知道了哪些重要的数学信息和数学问题?
请你说说看。
生答:长20米的小路,一边、每隔5米
2、我们的小路有几边呀!这条路的全长20米,
每隔五米栽一棵你是怎么理解的?也就是相邻两棵树之间间隔长度是多少?这个五米我们就把它叫做间隔的长度,我们也用一个词叫做间隔长。
3、同学们大胆猜一猜这条小路上,应该需要种几棵树呀!
同学们敢于猜想就向成功迈出了一大步。
4、我们的数学是一个严谨的学科,在数学上许多结论的得出都是通过数学家经过大量的验证才得出来的。
刚才我们才想出这么多到底哪个答案是正确的呢?
下面就请同学们动手设计画一画来验证你的猜想。请同学们以小组为单位进行合作探究。动手之前我们一起来看看合作要求。
要求:
1、用一条线段代表20米的小路。用最直观、最简洁的图形表示树,把你们的想法动手画一画。
2、再试一试把你的想法通过算式表示出来。
3、想一想间隔的个数和树的棵数有什么关系?
同学们动手画一画,看一看到底需要多少棵?
[设计意图:让学生动手设计调动学生学习的积极性,同时让学生在画一画的过程中潜移默化的运用一一对应的数学思想。这个环节具有开放性,不局限学生的'思维]
画完以后观察一下树的棵数与间隔数有什么关系?
2、交流展示设计方案
哪个小组想展示一下你们的合作成果?
二)探究两端都栽、一端不栽和两端不栽
师:仔细观察,我们刚才得到的。这三种设计方案有什么相同的地方。有什么不同的地方。
[设计意图:学生在观察三种设计方案中相同点和不同点时会发现棵数和间隔数之间有着密切的联系。而且也会发现两端都栽、只栽一端、两端都不栽三种情况]
师:同学们的眼睛很亮。很快就发现了相同点和不同点。由此我们知道了植树关键是得知道有几个间隔,也就是先求间隔数。然后再看需要栽树。
1、看第一种设计方案,我们给她起个名字叫两端都栽,观察棵数和间隔数之间有什么关系呢!可以和同桌两说一说。我们能不能用一个等式来表示刚才我们所发现的规律呢!
间隔数+1=棵数
棵数-1=间隔数
归纳:先求:总长÷间隔长=间隔数
再求棵数=间隔数+1
同学们的发现太了不起了!
2、第二种设计方案谁想给它起个名字?
生答:一端不栽或只栽一端
名字起的很有特点。
我们再来观察棵数和间隔数之间有什么关系?
谁想第一个说?生答:观察真仔细。老师给你点个赞!
3、这个咱一起给它起个名字吧!
这时候棵数和间隔数之间有什么关系?
师:你的发现太有价值啦!
看来刚才同学们的猜测都正确。下面我们再来一起欣赏同学们刚才的几种设计。
学生展示总结发现
两端都栽:棵数=间隔数+1
两端不栽:棵数=间隔数—1
只栽一端:棵数=间隔数
为了便于同学们记住我们的重大发现,老师送给大家一首儿歌。
4、植树问题好解决
知道间隔是关键
两端都栽间加1
两端不栽间减1
只栽一端与间同
[设计意图:根据低年级儿童的特点,儿歌琅琅上口更适合学生。学生喜欢读喜欢记。调动学生的学习积极性]
运用我们发现的规律不仅可以解决植树问题,还可以解决生活中的其他间隔问题如楼梯问题、钟表问题、队列问题、公交站问题、锯木头问题等等。接着我们走进生活,运用我们所学知识解决生活中的实际问题。
三、巩固练习
一)准备好接受挑战了吗?同学们请看题
1、一条走廊长50米,每隔10米放一盆花,一共需要放多少盆花?
师:真是会思考的孩子。
2、在两栋房子间有一条长100米的小路,如图在两栋房子间每隔10米种一棵树,共种多少棵树?(指生到黑板板演)
师:这道题我们首先看属于哪种情况?
生:两端都不栽,间隔数-1=棵数
师:你是个会学习的孩子,表现棒极了!
3、园林设计师听说咱班同学特别有想法,想请同学们帮忙。大显身手的机会来了。请看大屏幕。
为了保护一棵古树,园林处要为它做一个长30米的圆形防护栏。如果每隔2米打一个桩,一共需要打多少个桩?
首先同学想想他应该是这三种情况中的哪一种?老师这里带了一个小模型帮助同学理解。眼睛不要眨仔细观察,变变变。我把圆形防护栏给她拉直了。
老师用一种很巧妙的方法叫作化曲为直。我们可以把这个圆形护栏给它拉直。这时你发现它是只栽一端的情况。所以间隔数=棵数
师:同学们很会思考啊!
4、拓展延伸
刚才的问题没有难倒大家,要打木桩我们需要准备合适长度的木头。看,出示问题:
把一根木头锯成5段,每锯断一次需要6分钟,锯完这根木头一共需要多少分钟?
在解决这个问题时我们可以借助线段图。把答案写练习本上。
四、课堂小结
同学们,愉快的一节课马上就要结束了。你们学会今天讲的植树问题了吗?在解决这类问题的时候要注意什么呢?把数学知识应用到实际的生活中是不是很有意思?
生活中处处有数学,希望同学们做生活中的有心人。
[设计意图:渗透好环保教育,进而让学生点滴积累环保知识,为培养学生爱护环境、热爱大自然的品质而做些添砖加瓦的工作]
五、课后作业:
孙老师从家到学校,乘公交车一共有5个站点,每相邻两个站点之间的距离平均约1千米,你知道孙老师家到学校大约有多少千米吗?
植树问题教案篇3
教学目标:
1.建立并理解在线段上植树(两端都栽)的情况中“棵数=间隔数+1”的数学模型。
2.利用线段图理解“点数=间隔数+1”“总长=间隔数×间距”等间隔数与点数、总长、间距之间的关系,解决生活中的实际问题。
教学重点:建立并理解“点数=间隔数+1”的数学模型。
教学难点:培养用画线段图的方法解决问题的意识,并能熟练掌握这种方法。
教学准备:课件。
教学过程:
一、情境出示,设疑激趣
教师:同学们,我们都有一双勤劳的双手,它不仅能写,能画,其实我们的手指中还隐藏了许多数学知识!现在请大家伸出你们的左手,这里有几根手指呢?
预设:5根
教师:那手指与手指间的空隙叫什么呢?
预设:间隔
教师:在数学上,我们通常把两个手指间的空隙叫做间隔。大家观察一下,5根手指之间有几个间隔呢?
预设:4个间隔
教师:现在再看,现在伸出了几根手指呢?
预设:4根间隔
教师:4根手指之间有几个间隔呢?
预设:3个间隔
教师:5根手指之间有4个间隔,4根手指之间有3个间隔,你们发现手指数和间隔数之间有数量关系了吗?
预设1:手指数比间隔数多1
预设2:间隔数比手指数少1
教师:那你能不能用数学式子来表示手指数与间隔数的关系呢?
预设1:手指数=间隔数+1
预设2:间隔数=手指数-1
教师:连手上都有这么多数学奥秘,看来数学真是无处不在!这节课我们就来研究跟“间隔”有关的植树问题。(板书课题)
二、引入新知,经历过程,感受方法
教师:请看,请大家默读一下:(课件出示问题)。
引例:同学们准备在全长20米的小路一边植树。每隔5米栽一棵(两端要栽)那么这条路的一边将被树隔成了几段?
教师:告诉我们哪些条件?(提问)要求什么问题?(提问)
教师:同学们先用尝试用线段图来表示他们之间的关系。(学生动手并提问完成)
教师:这里的有几个间隔?
预设:4个
教师:那你们能不能用一个数学式子来表示?
预设:20÷5=4
教师:20表示什么?5表示什么?4表示什么?(分别提问)
预设:20表示这条路的长度(一般我们把它称为总长),5表示每隔5米栽一棵(我们一般把它称为间隔长),4表示有4个间隔。
教师:4个间隔相当于4段,所以我们数学上通常把有几段称为段数。所以4后面的单位是段。因此我们就得到了公式:全长÷间隔长=段数(提问)。根据除法算式中的关系,间隔长该怎么求?(提问)段数该怎么求?(提问)
教师:那现在如果我想在这条路上种树,一共需要几棵树苗呢?
预设:5棵。
教师:怎么列数学关系式?(提问)
预设:4+1=5(棵)
教师:为什么这样列呢?
预设:因为两端都栽。
教师:你们都跟他一样吗?所以你发现了树的棵树与段数之间的关系了吗?(提问推出棵树与段数的两个公式)
教师:刚才我们是在20米长的路上种树,那现在如果在100米长的路上种树呢?你还会吗?请看例1(课件出示例1)。大家在书本上完成。
例1:同学们在全长100m的小路一边植树,每隔5m栽一棵(两端要栽)。一共要栽多少棵树?
(请同学上台展示)
三、利用新知,解决问题
教师:连例题都难不倒你们!同学们真是太聪明了!可是,在“植树问题”中,一定要是“树”吗?除了“树”,还能换成别的事物吗?大家请看(出示生活中的图片实例)可见植树问题的应用领域是非常广泛的,下面就请大家应用刚才学的知识帮老师解决几个问题。
教师:今年的圣诞节刚结束,为了度过一个美好的圣诞节,张老师前几天在家可花了不少的心思!你们看——(分别出示3道练习)
练习1.我买了装礼物的袜子,像这样每两只袜子之间隔0.5米,挂成一排长8米(两端都挂),一共买了几只袜子?
教师:现在老师要把题目难度加大。(做完的同学可以把你的想法跟同桌说说)
练习2.我又买了21只铃铛,挂成一排,长6米(两端都挂),每两只铃铛之间要隔几米?
练习3.我还买了像圣诞树的衣服来装扮,15人排成一排,迎接圣诞老人(两端都排),每两个人之间隔2米,这个队伍有几米呢?
四、回顾思考,全课总结
教师:通过这一节的学习,你有什么收获?
思考:假如只栽一端或两端都不栽,那又会是什么情形呢?同学们课后去探究吧!
五、逆向思考,拓展新知
教师:最后老师有一个难度很大的题目想留给同学们回家思考!请看:
练习4.在圣诞节这天,老师看见100位圣诞老人一起来给我们送礼物,他们并列排成两队(两端都排),每前后两个圣诞老人之间相距1米,则这个队伍排了有多长?
六、布置作业
植树问题教案篇4
?义务教育教科书.数学》五年级上册p106—107。
“植树问题”是义务教育课程标准实验教科书四年级下册“数学广角”的内容,教材将植树问题分为几个层次:两端都栽、两端不栽以及封闭图形(方阵问题)等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律解决生活中的一些简单实际问题,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。
学生已经学习了除法的含义、《表内除法》、《除数是一位数的除法》、《除数是两位数的除法》以及用线段图来解决问题的方法。从学生的思维特点看,四年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。
“数学广角”系统而有步骤地向学生渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来。
解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被平均分成若干段(间隔),由于路线不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。“植树问题”的本质是对应问题,只要明确了“间隔”与“树”这两者之间的对应关系,突出“一一对应”的思想,再以此为基础并通过适当变化就可以应对各种变化了的情况。
为了更好的落实教学目标,本节课在教材的处理上我作了如下调整,把原例题中的路长“100米”改为“20米”,把“两端要栽”这个条件去掉了。数据改小有利于学生思考,也便于学生动手操作,但并不影响我们要研究的数学问题。“两端要栽”这个条件去掉了,旨在让学生在一个开放的情境中,通过动手操作、演示用一一对应的思想方法去探究植树问题中间隔数与棵数的关系。再通过展示现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后用发现的规律尝试用数学的方法来解决实际生活中的简单问题,从而使学生建立起深刻、整体的表象,提炼出植树问题解题思想方法。
1.知识技能。
借助直观,通过间隔和数的对应,理解间隔数与植树棵数的规律,建立不同情境下植树问题的数学模型。
2.数学思考。
(1)学生在参与观察、动手操作、比较等数学活动中,发展解决问题的意识和能力,能清晰地表达自己的想法。
(2)学会独立思考,体会数形结合、一一对应、化归、建模等数学思想方法。
3.问题解决。
(1)能运用所得到的规律解决实际问题。
(2)能和他人合作交流。
4.情感态度。
(1)能积极参与数学活动,对数学有好奇心和求知欲。
(2)在数学学习过程中,体验获得成功的乐趣,建立自信心。
(3)感受数学在日常生活中的广泛应用,体验植树问题的价值和作用。
重点:探究棵数与间隔数之间的`关系,运用一一对应,建立植树问题模型,会应用植树问题的模型解决一些相关的实际问题。
难点:应用植树问题的模型灵活解决一些相关的实际问题。
多媒体 笔 直尺
讲授、演示、讨论交流、操作练习等
一、课前互动、引出课题
师:想让自己的头脑变得更聪明的同学请以最佳的状态坐好,都有这个美好的愿望,光说不练可不行。这节课就让我们走上思维的道路,一起去迎接新的挑战吧。请看老师给你们带来的课前思维训练题:
1.一根木头长10米,要把它平均锯成9段,需要锯几次?
2.四年级在三楼,每上一层要走20个台阶,一共要走多少个台阶才能到三楼?(每层台阶数相同)
师:锯木头和上楼梯是生活中常见的现象,我们把它叫做“植树问题”,今天这节课我们就一起来研究有关植树问题的知识。(板书课题:植树问题)
二、探索规律、建立模型
(一)创设情境,出示问题。
园林工人打算在一条长20米的笔直小路一边植树,请同学们按照每隔5米栽一棵的要求帮忙设计一份植树方案,并说明理由。
师:从这份要求上,你能获得哪些信息?
(预设:20米长的小路,一边,每隔5米栽一棵)
师:每隔5米是什么意思?
(预设:两棵树之间的距离是5米,每两棵树的距离都相等)
(二)动手操作,设计方案
同桌二人合作,摆一摆或画一画
(三)交流汇报,展示作品
师:大多数同学已经完成了,谁来汇报(汇报后展示)
(预设:我们小组设计栽了5棵树。在一条长20米的路上,开始先栽一棵,然后隔5米栽第二棵,再隔5米栽第三棵……再隔5米栽第五棵。)
师:不错,老师期待你更精彩的表现,他们设计了5棵,还有不同方案吗?
(预设:我们小组设计栽了4棵树,开头的地方没栽,先隔5米栽第一棵……隔5米栽第4棵。)
师:为什么开头的地方不栽?
(预设:因为有的时候在一条路的一头可能会有障碍物,所以不能栽。)
师:你想得真周到,真是个既细心又爱动脑的孩子。是呀,如果在路的一端有建筑物就只能在另一端栽了!同学们的设计真精彩啊!还有不同的设计方案吗?
(预设:如果路的两端都有建筑物,可以栽3棵。)
师:你回答的太棒了,老师感到震撼!对,有的时候在路的两端都会有障碍物,这个时候路的两端就不能栽树。
(四)比较方案,探究规律。
1.间隔数与总长、间距的关系。
(1)出示植树的三种情况,学生观察相同点。
师:同学们真有创造力!短时间内根据要求设计出了三种不同的方案,你们都有资格成为一名设计师了。现在请用你们雪亮的眼睛看一看,这三种方案中相同的地方是什么?
(2)学生汇报,教师板书。(总长、间距、间隔数 20 5 4)
(3)间隔数与总长、间距的关系。
师:这三种方案的间隔数都是几?能用一个算式来表示吗?(20÷5=4(个))在这个算式中,每个数字分别表示什么?
你们能说说怎样求间隔数吗?(总长÷间距=间隔数)
问:要想知道有几个间隔,必须要知道哪两条信息?(总长、间距)
师:接下来,咱们来比一比,谁的反应快?(如果一条小路长100米,每隔10米栽一棵树,一共有多少个间隔呢?如果每隔20米栽一棵树,一共有多少个间隔呢?)
2.间隔数与植树棵数之间的关系。
(1)学生观察不同点,教师讲解三种方法的名称,同桌交流棵树和间隔数的关系。
问:刚才咱们找到了这三种方案的相同点,请同学们再用你们睿利的目光观察,不同的地方又是什么呢? (预设:植树的棵数不同、植树的方法不同)
学生汇报后,教师讲解三种方法的名称。
师:看来虽然间隔数相同,但是不同的植树方法,植树棵数是不同的。我们就来研究在不同的植树方法中,间隔数与植树棵数之间存在着怎样的关系。赶紧用你们的慧眼去发现吧,可以把你的发现和同桌分享。
(2)汇报交流。(板书)
(3)演示,明白原因。(演示:树与间隔之间的一一对应关系。)
3.小结:解决植树问题方法
师:会求植树的棵树吗?这三种关系可是个宝贝,你们想得到它吗?那请闭上眼睛,打开你的大脑主机,我要把这个宝贝输入你的大脑了,千万别开小差啊,出现死机现象那可麻烦啦,准备好了吗?我要开始传宝贝了……好,收到了宝贝的同学请用最美的姿势坐好。
三、巩固应用、内化提高
师:既然宝贝已经保存在你的大脑里了,那可不能让它天天睡懒觉,得常常拿出来发挥一下它的神奇作用。下面这几道题就需要它大显身手。请看:
1.有一条500米的石子路,在石子路的一侧每隔5米栽一棵(只栽一端),需要准备几棵树?
2.同学们在全长1000米的小路一边植树,每隔8米栽一棵(两端都栽)。一共需要多少棵树苗?
3.大象馆和猩猩馆相距60米。绿化队要在两馆间的小路一侧栽树,相邻两棵树之间的距离是3米。一共要栽几棵树?
4.在一条全长180米的街道两旁安装路灯,(两端都要安装),每隔6米安一座。一共要安装多少座路灯?
四、课堂总结、拓展延伸
师:今天我们一起研究了有关“植树的问题”,不过,我有一个疑问想请大家帮我解释一下:植树问题就仅仅是指植树这一种现象吗?
生举生活中的其他例子,锯木头、上楼梯、安装路灯……
回到大脑思维体操的题目,进一步理解每一个算式表示的意思。
师:第一题锯木头属于哪种情况,第二题又属于哪一种情况呢?
师:今天这节课,你觉得你最大的收获是什么?
师:植树问题在我们的生活中无处不在,它美化着我们的生活,美化着我们的校园。其实在“植树问题”中,“植树”的路线可以是一条线段,也可以是一个封闭图形,比如正方形、长方形或圆形等。有兴趣继续探索吗?请利用本节课学到的方法回家和家长探讨。
板书设计:
(一条线段上的)植树问题
方法 间隔数 棵数 关系
总长 ÷ 间距
两端都栽 4 5 棵数=间隔数+1
只栽一端 4 4 棵数=间隔数
两端不栽 4 3 棵数=间隔数-1
植树问题教案篇5
设计理念
本课通过生活中的事例,调动学生已有的生活经验,接触一些重要的数学思想方法,经历猜想、实验、推理等数学探索过程,激发学生对数学的好奇心和探求新知的兴趣,增强学习数学的兴趣。以学生发展为本,着眼于数学思维能力的培养。注重引导学生充分体验探究过程,感受数学在日常生活中的广泛应用,培养学生的观察比较、动手操作、分析概括能力以及语言表达能力。
教学内容
?义务教育课程标准实验教科书数学》(人教版)四年级下册第117页。
学情与教材分析
“植树问题”是人教版四年级下册“数学广角”这个单元的一节内容。和前几册教材一样,主要是向学生渗透一些重要的数学思想方法。本课主要是渗透有关植树问题的一些思想方法,教学时通过现实生活中的一些常见的实际问题,让学生从中发现规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。
教学目标
1、通过动手操作、小组合作,使学生能理解间隔数与植树棵数之间的规律,并将这种规律应用到解决类似的实际问题之中。
2、培养学生在解决实际问题中探索规律,找出解决问题的有效方法的能力。渗透数形结合的思想,培养学生借助图形等方式解决问题的意识。
3、培养学生的合作意识,养成良好的交流习惯。通过实践活动激发热爱数学的情感,感受数学与现实生活的密切联系,体验学习成功的喜悦。
教学重点
引导学生发现不封闭线路上,两端都栽时间隔现象的简单规律。
教学难点
运用规律解决类似的实际问题的方法。
教学准备
电脑课件、泡沫条、小树模型、表格等等。
教学过程
一、创设情境,引入新课
1、初步感知植树方法的多样化
师:春天是个植树的好季节,你们知道植树有哪些好处吗?
植树原来有这么多的好处啊。这节课,我们就一起来研究植树中的数学问题。(板书课题)
(课件出示)兰兰想在门前小路的一侧种上三棵小树苗来美化环境。你们能帮她设计出一种方案吗?
请学生上台用课件演示:鼠标移动书苗介绍设计方案
?学情预设:有的学生在小路两端各栽一棵,中间栽一棵;有的学生把三棵都栽在中间;有的学生从一端栽起,另一端不栽。】
师示范给一种方案命名,其他方案请学生命名。
结论:(1)两端都栽。
(2)只栽一端。
(3)两端都不栽。
(板书)
?设计意图:将生活中常见的植树问题,整体地呈现出来,培养学生“用数学”的意识,渗透“生活中处处有数学”的'思想。放手让学生设计方案并冠名,充分体现学生的主体地位。】
二、动手操作,探究新知
1、教学例1
本节课我们主要学习两端都栽的植树问题。
(1)出示例1:六年级的学生想在全长100米的校园小路一边植树,每隔5米栽一棵(两端都栽),一共要准备多少棵小树苗?
读完题目,你们获得了哪些信息?
猜猜看,一共要准备几棵小树苗?
?设计意图:培养学生认真审题的好习惯。学生在猜想的过程中可能会出现几种不同的答案,到底哪种答案对呢?留下悬念,引发思考,激发学生探究新知的欲望。】
(2)学具操作,初步探究
到底谁的答案是对的呢?我们先取100米中的一小段20米来研究。
小组合作,用学具模拟栽树。思考:两端都栽的时候,应该栽多少棵?
学生展示学具,汇报模拟结果。
?学情预设:学生汇报:每隔5米栽一棵,所以在5米,10米,15米,20米的地方各栽一棵。两端都要栽,所以在0米的地方又栽一棵,一共是5棵。】
(3)教学画线段图
我们用一条线段来代表20米长的小路,用几个点来代表小树苗。这就是我们经常要用到的线段图,线段图可以很好地帮助我们思考。(课件展示)
师:这几个点除了可以代表小树苗,还能代表其他的东西吗?引导学生发现点可以表示很多物体。
师:两点间的距离可以用哪个词语来表示呢?(间隔)
生活中你们还见过哪些间隔,能举些例子吗?
刚才在植树中,你们发现了几个间隔(数)呢?是怎么知道的?
?学情预设:学生可能会说是数出来的,可能会说是算出来的……每一种方法教师都予以肯定。】
?设计意图:老师呈现解决问题常用的方法:遇到复杂问题想简单的,从简单问题入手去研究。让学生利用学具模拟实际种树去检验,学生兴趣比较大,做到人人动手实践,丰富了学生的感性材料,并自然过渡引出线段图,为学生顺利发现并总结规律打下了基础。】
师:同学们在刚才栽树的过程中,还发现了什么?
?设计意图:给学生一个思考的空间,使学生发现植树时要准备树苗的问题并不能简单地用除法来解决。】
(4)感知规律
如果让你们来栽树,在这条20米的小路上,要使每棵树之间的距离相等,还可以每隔几米栽一棵树?
?学情预设:学生会提出每隔1米,2米,4米,10米,20米栽一棵。】
出示表格,根据学生的回答将间隔填上。
小组合作:选择一、两种间隔,用喜欢的方法找出间隔数和棵数,填入表格中。
总长
间隔(米)
间隔数(个)
棵数(棵)
20米
(两端都栽)
5米
4个
5棵
1米
2米
4米
10米
20米
填好表格后,小组派代表汇报结果。
?学情预设:学生可以用画线段图、算一算、数一数等方法完成。】
?设计意图:学生自由选择方案,并选择用自己喜欢的方式来找出间隔数和棵数,体现教学方法的开放性。展示学生不同的探究方法,体现“不同的学生学习数学的水平可以不同”的教育思想。】
谈论交流:两端都栽时,植树的棵数与间隔数之间有什么关系?
得出结论:两端都栽树时,棵数比间隔数多1.也可以说间隔数比棵数少1.
板书:(两端都栽)间隔数+1=棵数
质疑:为什么两端都栽时,棵数比间隔数多1?
配合学生的回答,课件展示
?设计意图:启发学生透过现象发现规律,也就是在两端都栽时,棵数比间隔数多一。】
(5)练习
老师有几个问题想请你们用刚才所学的规律以抢答的形式来帮忙解决。
两端都栽时,7棵树有几个间隔呢?9个间隔有几棵树?12棵树有几个间隔呢?20个间隔有几棵树?……
?设计意图:全体学生一起抢答,知识得到了巩固,同时也活跃了课堂的气氛。】
(6)验证
我们利用这个规律来算一算,两端都栽时,100米到底应该种多少棵树?看看前面哪些同学猜对了。
?设计意图:学生经历了分析、思考、解决问题的全过程,同时利用所学的规律加以验证。从中得到解决问题的方法,丰富了学生的解题策略,体验到成功的喜悦。】
三、应用规律
(1)任意一纵队的学生起立
师:谁能应用刚才所学的知识提几个数学问题?
?学情预设:学生可能会提:有几个间隔?头尾两个同学相距多少米?每相邻两个同学间隔有多少米?】
(2)学校小路一侧插上12面彩旗,两头各插一面,每两面彩旗之间相隔6米,这条小路长多少米?
(3)工人架设电线杆,每两根电线杆之间的电线长100米,从第1根到第9根之间要拉多长的电线?
(4)学校组织40名同学参加车鼓队排练,请你设计一下队形?可能会排成几排?
?学情预设:1排、2排、4排、5排、8排……】
师:如果老师想排成一排,每两个同学的间隔是2米,想想,这个车鼓队伍头尾相距多少米?
如果老师想排成两排呢?
(5)我们的城市建设正在火热进行中,市里决定在一条长20xx米的街道两侧安装节能路灯,(两端都要安装),每隔50米安一座,算算看一共要安装多少座路灯?
?设计意图:应用知识解决孩子们身边的问题,解决学校的问题,解决社会公益问题,提高了学生解决生活实际问题的能力。充分体现了新课标“数学学习内容应当是现实的,有意义的,富有挑战性的”的理念。】
四、全课总结
学完这节课,你有什么想对老师或者同学们说的呢?
五、课外思考
为了进一步美化我们的校园,学校准备沿着宣传廊一旁摆上漂亮的花。宣传廊全长约60米,如果每隔6米摆一盆花,你想怎么摆?一共需要购买多少盆花?
?设计意图:把探究活动延伸到课外,为下一节课的教学做好铺垫。】
设计思路:
?植树问题》是人教版小学数学实验教材四年级下册新增的一个内容,其目的是向学生渗透一些重要的数学思想方法。教材通过现实生活中一些常见的实际问题,让学生从中发现规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。
上课伊始,对学生们进行环境保护教育,让学生意识到植树和生活有紧密的联系,而且植树中还藏着有趣的数学问题,激发学生的求知欲。
导入新课后,让学生成为学习的主人,学生经历了猜猜,试试,画画,填填等多种学习形式,自主探究出规律。整个过程培养了学生的动手操作能力,自主探究能力,小组合作交流能力。学生自由选择方案,体现教学方法的开放性,在教师的引导下,学生很快地发现了规律,并构建起植树问题的数学模型,为下一节课的教学打下坚实的基础。
在练习巩固环节,让学生运用新获得的数学知识来解决生活中的实际问题,让学生意识到生活中处处有数学,数学源于生活,又用于生活,激发学生的学习热情。
本课设计的立足点在于学生的发展,把学生探索规律的过程作为课堂的中心点,把学习的主动权交给学生,发展了学生的潜能,培养了学生的实践能力和创新意识。
植树问题教案篇6
教学内容:人教版义务教育课程标准实验教材四年级(下册)第117---118页例1
教学目标:
1.通过探究发现一条线段上两端要种、一端要种、两端不种三种不同情况植树问题的规律。
2.使学生经历和体验“复杂问题简单化”的解题策略和方法。
3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
教学过程:
1、课前谈话:
今天来这里上课,有什么不同的感觉?
老师挺高兴的,这么多人,正好做一个公益宣传,请看--
春天,是植树的最佳时间,在座各位朋友,同学,为了我们地球生命,给这些孩子们一个健康的环境,请爱护树木,有钱出钱,有力出力,多多种树!支持的,鼓鼓掌!谢谢!
一、创设情境,出示问题(2分钟)
1、揭示课题(2分钟)
师:你们觉得种树与数学有联系吗?
生:间隔,米数等等问题。
师:种树与数学之间确实有联系,这节课我们就一起在种树问题上研究数学。(课件出示课题:植树问题)
2、出示问题
课件出示问题:同学们在全长1000米的小路一旁植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗。
二、化繁为简,解决问题(26分钟)
1、理解信息(2分钟)
师:能看懂吗?告诉我们哪些信息?
生:全长100米,每隔5米等等
师:每隔5米是什么意思?
生:就是两棵树之间的“间隔”;
师:“间隔”这个词听过吗?能举几个例子吗?
比如同学之间,手指之间......都可以看作是间隔。
师:两端要种什么意思?
生:头和尾各要种一棵。
2、形成猜想(1分钟)
师:如果,把这条路的一旁看成一条线段的话,猜猜看,需要几棵树?看谁想得快!
生1:200
生2:201
生3:202
师:三个猜想答案,到底哪个答案才是对的?我们有什么办法知道?
生:验证。
3、化繁为简(4分钟)
师:是的,可以画图,模拟种一种,数一数,就能知道正确的答案了。
师:(课件演示)请看,用这条线段表示这条路。“两端要种”,先在开头种上一棵,然后每隔5米种一棵......大家看,种了多少米了?生:35米
师:才种了35米,一共要种多少米?
生:1000米。
师:这样一棵一棵,一直种到1000米?!同学们,你有什么想法?
生:太累了,太麻烦了,太浪费时间了。
师:英雄所见略同,一棵一棵种到1000米,方法是对的,但确实太麻烦了。其实,像这样比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?
生:想
师:这种方法就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究,在研究的过程中发现规律。(课件出示:研究方法:复杂问题--简单问题--发现规律--解决问题)
3、举例验证(5分钟)
师:比如:1000米的路太长了,我们可以先在短一点的路上种一种,看一看,是不是有什么规律,找到规律了我们再来解决复杂的问题。(课件出示:100米--
师:你认为取多少长的路,画图种树,比较好验证呢。
生:5米,10米,15米,20米,25米。
师:老师给你们带来了长短不同的“路”,把它想象成“路”,行吗?你可以把它看作是10米,15米等等,现在请你用笔,独立在这些“路边”种树,并列出算式,把你的发现也写在纸上,开始。(学生独立活动,2分钟后,)
师:把自己的发现,轻轻地告诉小组里的同学,并做好向全班同学汇报。
4、反馈交流(如何操作还是一个问题)(5分钟)
请一个小组把自己的研究成果展示在黑板上。
师:请你代表这组同学,把研究的过程,和得到的规律,向全班同学解释一下。
师生互动
师:这空在这里是怎么回事?
生:间隔5米;
师:为什么是空了4个间隔?
生:20米里正好有4个5米;
师:怎么算出来的?
生:20除以5等于4
师:4个间隔数,空了4次
师:这样种(板书:两端种),可以吗?)
5、揭示规律(0.5分)
师:运用化繁为简的解决策略,同学们发现了植树问题中,非常重要的一个规律,那就是:(板书:两端要种:棵树=间隔数+1)
6、解决问题(3分钟)
师:现在你能运用这个规律,解决刚才复杂的问题吗?请独立列出算式。然后向同座说一说解决思路。(请一位学生板演,并说解题思路,老师追问:这里的200指什么,为什么要减1。)
师:(指着猜想答案)当时你是怎么猜想到200棵的。
师:虽然你猜测的答案是错的,但你敢猜想,证明你有学数学的胆量,正因为出现了不同的答案,才让我们走上探索之路,所以,我们得谢谢你!
7、巩固练习(6分)
(1)从王村到李村一共设有8根电线杆,相邻两根的距离平均是200米。王村到李村大约有多远
(2)园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?
三、再度猜想,打通联系(10)
1、过渡设疑
2、形成猜想
3、验证猜想
4、得出结论
5、打通联系
四、拓展选择,辨别类型(3分钟)
师:其实植树问题并不只是与植树有关,在我们的生活中,还有许多现象与植树问题很相似。
(1)同学们排队跑步,队伍长4米,每两人之间的距离是1米,这队学生有多少人?
1)4÷1+1=5(人)2)4÷1-1=3(人)3)4÷1=4(人)
(2)一根10米长的木条,工人叔叔按每段2米长的标准来锯开它,需要锯几次才能完成任务?
1)10÷2+1=6(次)2)10÷2-1=4(次)3)10÷2=5(次)
(3)5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米,街道一边一共有几个车站?
1)12÷1+1=22(个)2)12÷1=20(个)3)12÷1-1=9(个)
五、丰富背景,遗留问题。(1.5分钟)
师:其实,同学们的收获才刚刚开始。多个点等距离排列成一条直的线,点的数量与间隔数之间有一定规律;如果,多个点等距离排列成一个方阵;如果,多个点等距离排列成一个圈,或等距离排列成其它形状,这里面蕴含着更深奥的数学,期待同学们去发现!
植树问题教案篇7
教学内容:教科书106页例1及相关内容。
教学目标:
1.通过猜测、实验、验证等数学探究活动,使学生初步体会两端都栽的植树问题的规律,构建数学模型,解决实际生活中的有关问题。
2.培养学生通过“化繁为简”从简单问题中探索规律,找出解决问题的有效方法的能力,初步培养学生的模型思想和化归思想。
教学重点:
发现并理解两端都栽的植树问题中间隔数与棵树之间的关系。
教学难点:
运用“植树问题”的解题思想解决生活中的实际问题。
教学准备:多媒体课件、直尺、学习纸。
教学过程:
一、 谜语引入做铺垫:
1.师:同学们,记得上一次上课前老师给同学们除了一个谜语,同学们一下子就猜出来了,今天老师又带来了一个谜语。
师说谜语,学生回答(手)
师:真厉害!现在举起你们的右手,手心向我,尽量把五指张开,大家看,每两个手指间都有一段?(距离)。在数学中,我们把这一段距离就叫做一个间隔。(板书:间隔)5个手指间有几个间隔呢?(4个),4个手指呢?(3个),3个手指呢?(2个),2个手指呢?(1个)。好,同学们可以把手放下了。
2.现在请第一小组的前5位同学站起来,站起来的这5位同学之间有没有间隔?(有)。从第一位同学到最后一位,一共有几个间隔呢?(4个)后面一位同学也请站起来,现在有几位同学?几个间隔呢?(6位,5个),再站起来一位,现在是?(7位同学,6个间隔)。好,请坐,谢谢你们。
手指之间有间隔,刚才站起来的同学间有间隔,我们在植树时,树与树之间也要有间隔,那么今天我们就以植树为例探讨与间隔数有关的问题。
板书课题:植树问题
二、探索新知
1.出示例题:植树节到了,同学们要在100m的小路一边植树,每隔5m栽一棵(两端要栽)。一共要栽多少棵树?
2.理解题意:
师:在这道题中,你们发现了什么数学信息?
生回答(总长度100m,5m一棵)。课件演示。
师:每隔5m一棵是指两棵树之间的距离是5m,我们把这个距离叫做间隔长度。
师:还要注意哪些重要的信息?生:一边。师:一边是什意思?路有左右两边,只要在一边栽树,另一边不栽。生:两端要栽。师:路的起点和终点都要栽。
课件演示。
3.学生猜想:
师:你们猜一猜,一共要栽多少棵树?谁来说说。
生回答。怎样得到的。师板书:100÷5=20(棵)等等。
师:到底要栽多少棵呢?哪一种猜想是对的,我们要检验一下,你们认为怎样检验?(画图)100m的小路每5m画一棵,5m画一棵,这样画下去你们觉得?(太麻烦)。为什么麻烦?(100里面有20个5m),怎么办呢?
像这样数据大、比较复杂的问题,我们可以先从简单的情况入手进行研究,我们可以选择100m中的一小段,如果是15m的小路,可以栽几棵?20m呢?
4.学生操作:
师:请同学们拿出学习纸,我们用线段表示小路,把小路的长度缩小100倍,学习纸上15cm的线段表示15m的小路。20cm表示20m,我们用5cm一个间隔表示5m一个间隔。可以用你喜欢的图案表示一棵树。画好后,完成下面的表格。
学生操作。师巡视。画好的互相检查。
5.学生汇报:
师:请一个同学汇报一下结果,15m的小路?生:3个间隔,4棵树。
师:同意吗?我们来演示一下栽的情况。首先起点处栽一棵,隔5m栽一棵。
第3棵树时,师问:还要栽吗?(要)为什么?(两端都要栽)起点栽一棵,终点也就是末尾也要栽一棵。
大家看,15里面有几个5m?(3个),也就是3个间隔。1、2、3,3个间隔,1、2、3、4,4棵树。3个间隔4棵树。刚才那位同学的回答是正确的。20m的小路?(4个间隔,5棵树)。我们来看,(课件演示)还是5m一个间隔,终点还要栽一棵。20里面有几个5m?(4个)几棵树?(5棵)。4个间隔5棵树,回答正确。
6.尝试列式:
师:你发现了什么规律,不画图,你知道25m要栽几棵树吗?试一试。
学生尝试列式。汇报,师板书:25÷5=5(个间隔)5+1=6(棵)
学生说列式想法:5m一个间隔,25m里有几个5m就有几个间隔,求出的是间隔数,棵数比间隔数多1,所以要加1.
师:为什么要加1,你怎么知道棵数比间隔数多1(从刚才表格得到的规律)你们同意吗?(同意)。
7.理解规律:
如果说5个间隔就栽5棵树会出现什么情况呢?我们来看,一个间隔对应一棵树,5个间隔就是5棵树,这样栽完了吗?(没有)为什么?(末尾没栽,这是一端栽一端不栽)5个间隔栽5棵树行吗?(不行),应该栽几棵?(6棵)。
要使两端都栽树,棵树和间隔数有一个怎样的'关系呢?谁来说。
(棵树比间隔数多1,反过来,间隔数比棵树少1)
8.巩固强化,得出结论:
师:同学们都明白了两端都栽的情况下,棵树和间隔数之间的关系,现在老师出几道题考考大家,7间隔栽几棵树?20个间隔栽几棵树?9棵树之间有几个间隔?20棵树之间有几个间隔?非常好!
如果用一个等式来表示间隔数和棵数之间的关系,应该怎样写?
间隔数+1=棵树(棵树—1=间隔数)
大家把这个关系齐说一次。
要求棵数必须要知道?(间隔数)
已知总长度和间隔长度怎样求间隔数?
总长度÷间隔长度=间隔数齐读一次。
9.运用方法,验证例题:
师:现在我们回到例题,100m的小路一边植树,每隔5m栽一棵(两端要栽),到底要栽多少棵树?你猜对了吗?
看看黑板上这种做法对吗?生回答,集体讲评。课件出示正确列式。
三、巩固练习:
1.同学们在全长400m的小路一边植树,每隔8m栽一棵树(两端要栽),一共要栽多少棵树?
学生完成,板演,讲评。、
把一边改为两旁,生独立完成,集体讲评。
2. 工人叔叔正在架设电线杆,相邻两根间的距离是200m。在总长3000m的笔直路上,一共要架设多少根电线杆(两端都架设)?
师:这道题和我们今天学的植树问题有联系吗?(有)谁来说一说。
生回答,师引导找到联系,在课件上标示。
学生独立完成,板演,集体讲评。
3.在一条笔直的公路一侧植树,每隔6m种一棵,一共种了36棵。从第一棵到最后一棵的距离有多远?
学生独立完成,师提醒:先求间隔数。
四、课堂小结。
(略)
会计实习心得体会最新模板相关文章: