富有挑战性的教案能够培养学生的问题解决能力和创新思维,每一位教师都应该掌握写教案的技巧和方法,下面是丫丫文章网小编为您分享的小数乘小数教案通用8篇,感谢您的参阅。
小数乘小数教案篇1
一、复习
用分数表示下面的数。
1角=( )元 1分米=( )米 2角=( )元
1厘米=( )米 1分=( )元 1毫米=( )米
二、教学例1:
1、出示例1:用“角”或“分”作单位,说出下面物品的价钱。
指名回答问题。注意学生回答问题时要完整。
橡皮的单价0.3元是3角;信封的单价0.05元是5分,练习簿的单价0.48元是4角8分或48分。
2、教学小数的读法:
你能读出下面的小数吗?鼓励学生大胆尝试。
0.05 读作: 零点零五 0.48 读作: 零点四八
引导学生总结读整数部分为0的小数的方法:
从左往右依次读出各位上的数。
3、初步感受两位小数的含义。
想一想:0.3元是1元的几分之几?0.05元是1元的几分之几?0.48元呢?
小组讨论交流。
汇报:0.3元是1元的十分之三。
思路: 1元=100分,1元平均分成100份,1份是1分,1分就是1元的1/100 ;0.05元是5分,是5个1/100 ,也就是1元的 5/100。
根据上面的思路,让学生说明0.48元是1元的48/100 。
引导学生看到0.05和0.48都是两位小数,都表示百分之几。
4、“试一试”
a、理解:1厘米是 1/100米, 1/100米可以写成0.01米。
b、用米为单位的分数和小数分别表示4厘米与9厘米。
学生回答并说名理由。
比较:这三个分数都是什么样的分数?(百分之几的分数)
这三个小数呢?(两位小数)
我们知道一位小数表示十分之几,那两位小数又表示什么呢?(百分之几)
三、数形结合,建立小数的概念。
1、出示例2:把什么看作“1”?(正方形)
看着图形将1/10和1/100 写成小数。学生自主填空后回答。
提问:0.1表示什么?0.01又表示什么?
2、试一试:学生自主练习,进一步体验小数的意义。
3、思考:
观察前面出现的小数与分数的关系,你有什么发现?和小组内的同学交流一下自己的观点。
结论:分母是10、100、……的.分数可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几……
4、想一想:
1/1000写成小数是多少?29/1000 呢?你能写一写、读一读吗?
b、 进一步体会读法:0.001 读作 : 零点零零??
0.029 读作 : 零点零二九
强调:小数部分的零要一个一个的读,不能只读一个零。
我们知道了一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几,那么你知道四位小数表示什么吗?学生回答。
5、练一练:
学生自主填空,交流时注意让学生根据小数的意义进行说明。
四、巩固练习:
练习五的1—5题。
练习时让学生自主练习,指名回答时要培养学生完整回答并应用自己学过的知识阐明观点的习惯与能力。
注意:练习的第3题,出现了整数部分不是0的小数,读写应该不会有困难,但是在用小数的意义进行说明时,对于一部分学生可能会造成困难,虽然题目没有要求学生进行意义说明,但是在教学中还是应该有初步的渗透。
小数乘小数教案篇2
教学目标
1、初步理解小数的基本性质,并应用性质化简和改写小数。
2、运用猜测、操作、检验、观察、对比等方法,探索并发现小数的性质,养成探求新知的良好品质。
3、感受透过现象看本质的过程以及数学在实际生活中的重要作用,体验问题解决的情趣。
教学重难点
教学重点:让学生理解并掌握小数的性质。
教学难点:能应用小数的性质解决实际问题.
教学工具
ppt课件
教学过程
出示课件在括号里填上适当的数
1元=( )角=( )分 1分米=( )厘米=( )毫米
3米=( )分米=( )厘米 5元=( )角=( )分
(一)、创设情境,引导探索
1师:老师了解到商店的一把勺子的标价是3.00元,在日常生活中说是多少钱呢?(3元),3元和3.00元是什么关系呢?(3=3.00元)出示一副手套的标价是2.50元,我们把2.50元平时说成是多少钱?(2.5元)
师:为什么2.5元末尾添个0大小不变呢?究竟可以添几个零呢?这节课我们就来研究这一方面的知识。
二、探究新知、课中释疑
1.教学例1。让学生动手操作量出三张长0.1米 0.0—1米 0.001米的纸条。
你发现这三张纸条的长度是怎样的?
(1)课件出示1分米、10厘米、100毫米的线段图
请比较一下它们的大小。学生略加思考后马上提问,要求说说你是怎么知道的。(即想的过程)
演示:重合法比较1分米、10厘米、100毫米的大小。
板书并演示:1分米=10厘米=100毫米
(2)导入例1:
你能把它们改写成用米做单位的.小数的形式吗?
根据学生回答归纳演示:1分米是1/10米,写成0.1米
10厘米是10个1/100米,写成0.10米
100毫米是100个1/1000米,写成0.100米
并板书:01米 0.10米 0.100米
那0.1米、0.10米、0.100米之间大小有什么关系呢?
学生很快回答后课件演示。并在他们之间加上等号。
我们还可以用重合法比较一下。(课件演示)
(3)指导看黑板:
1分米 = 10厘米 = 100毫米
0.1米 = 0.10米 = 0.100米 0.1=0.10=0.100
提问:这说明了什么问题?
请大家仔细观察这个等式,可以从左往右看,再从右往左看,有什么变化?在这个小数的什么位置(强调是末尾,不是后面)?多(少)0还可以怎么说?
导:想想0.30表示什么意思?0.3呢?应该涂多少格?
学生涂完色问:你为什么这样涂?之后演示涂色过程。
问:谁涂的面积大?0.30和.0.3的大小怎样?你是怎么知道的?
直观比较法:看上去都一样大;
(在原板书下再板书:0.30=0.3)
(5)从数位顺序表上可以看出,在小数的末尾添零或是去零,其余的数所在数位不变,所以小数的大小也就不变。
师:小数中间的零能不能去掉?能不能在小数中间添零?
生:不能,因为这样做,其余的数所在数位都变了,所以小数大小也就变了。
师:那整数有这个性质吗?(要强调出小数与整数的区别)
(6)判断下面的说法对吗?
(1 在一个数的末尾添上“0”或去掉“0”,小数的大小不变。
(2) 在小数点的后面添上“0”或去掉“0”,小数的大小不变。
(3)在小数的末尾添上“0”或去掉“0”,小数的大小不变。
(4)把小数的末尾的“0”去掉,它的计数单位就发生了变化。
(五)、总结
师:什么叫小数的性质?
十二、作业设计
完成教科书第64页第一题。
板书
小数的性质
观察:1分米=10厘米=100毫米
0.1米=0.10米=0.100米
0.1=0.01=0.001 0.3=0.30
小数的基本性质:小数的末尾添上或去掉“0”,小数的大小不变。
小数乘小数教案篇3
教学目标:
1、使学生结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。
2、利用直观的图片,建构小数和分数的联系,经历小数意义的归纳过程,学会小数之间的转换。
3、培养学生的迁移、类推能力,以及良好的数学学习品质。
教学重点:
理解小数的意义,知道小数的计数单位及每相邻的两个计数单位之间的进率是10。
教学难点:
理解一位、两位、三位小数的意义。
教学过程:
一、情境导入:
1、(展示一根绳子)猜猜它有多长?
生猜:1米……
师:要想知道准确的结果,怎么办?
生:量一量。
师:谁愿意来测量一下它的长度?
两名学生合作测量。
师:把你们测量的结果汇报一下。
生:一米。
师:刚才谁猜对了?大家的眼力真不错,很会观察,下面加大难度,你能猜一猜课桌面的宽吗?
生猜并测量验证。
师:通过测量我们发现,绳子的长度是1米,课桌面的宽度是41厘米,那么课桌面的宽度仍用“米”做单位,还能用整数表示吗?
生:不能。
师:为什么不能用整数了?
生汇报
师:也就是说,在进行测量时,如果不能得到整数的结果,我们就要用其他的数来表示,也就是我们今天要学习的小数。(板书:小数)
师:那你们说说在哪些地方还见过小数。
生汇报
师:看来小数在生活中的用处真是不小,今天我们就来研究“小数的意义”。(补充板书)
二、探索交流,建构新识:
(一)理解一位小数的意义。
1.师:请同学们任意说一个小数。
生汇报师板书
师:那老师也来写几个。
0.1 0.01
师:猜一猜老师接下来会写什么?
生:0.001
师:同学们真的是很会推理。
2.今天我们要学习的是--小数的意义,那我们就从0.1开始研究好不好,那0.1的意义你知道吗?它表示什么?
生汇报
师:对于0.1同学们都有不同的认识。老师带来了一个正方形,如果我们用一张正方形表示1的话,请你估计一下,0.1该有多大,用手比划一下。
师:请同学们在这张纸上分一分并用阴影涂色表示出0.1。老师看哪些同学的速度最快。
3.生展示、汇报
展示若干组学生的画法。
(编号,让学生说出自己的想法。)
师:你认为哪位同学表示出了0.1那么大小。
生:1号;3号;2号;4号。
师:到底哪位同学的表示出了0.1呢?我们一起来看一下。(出示课件)这个纸杯的售价为0.1元,如果你是顾客,你应该付给售货员多少钱?(1角)。明明是0.1元,为什么你要付1角钱呢?(生汇报:0.1元就是1角)师出示课件。那一角钱还可以用()/()元(生汇报)
师:1角=元,1角=0.1元,那元和0.1元是什么关系?看来,0.1=。
师:现在我们再来回头看刚才几位同学的作品,哪位同学的涂色部分表示出了0.1?(生汇报:3号和4号。)
师:现在我们再一起来理顺一下。(出示课件)一个正方形用1表示,要想表示0.1我们先把这个正方形平均分成10份,其中的一份涂出来就是0.1。
师:那现在谁来说说0.1到底表示什么?
生汇报师小结:说简单点0.1就表示。(板书)
师:涂色部分为0.1那空白部分用哪个小数表示呢?
生汇报:0.9。
师:怎么看出0.9的?
生汇报
师:那0.9表示什么?()0.9里面有几个0.1?(9个)我们一起来数一数。把0.1和0.9合在一起是多少?
生:1
师:现在我们明白了1里面有(10)个0.1。(板书)
4.再涂1块能看到哪两个小数?
生:0.2、0.8。
师:他们的分数朋友分别是谁?(生汇报师板书),把它们合在一起是多少?(1)
师:(指板书)仔细观察,这些小数有什么特点?(小数点后有一位数的小数叫做一位小数。)(板书:一位小数)这些分数有什么相同的地方?
生:分母都是10、都是十分之几……
师:那我们就可以说一位小数表示的就是十分之几。(板书)
(出示课件)其中的一份,就是一位小数的计数单位。也就是说一位小数的计数单位是(十分之一),写作(0.1)。这就是我们认识的一位小数。
(二)理解两位小数的意义。
1.师手指0.01,0.01表示什么呢?如果还是把这张纸看做1,要找出0.01你会怎么做?
同桌交流讨论。
生汇报:把它平均分成100份,取其中的一份。
预设:如果学生有分歧,可用一元和一分的关系来验证帮助学生理解。
师:同学们的想法非常正确,我们要想在正方形中找到0.01,就要先把这个正方形(出示平均分成100份的正方形)
师:0.01就表示。还看到了哪个小数?
生:0.99。
师:0.99里面有几个0.01。
生:99个。
师:把他们合起来是多少?那1里面有多少个0.01?(100个)师板书
2.如何表示0.25呢?
生汇报
师:还能想到哪个小数?他们的分数朋友分别是谁?
生:0.75,分数朋友:
3.(拿出平均分成100份的正方形纸)请你在方格纸上创造一个新的小数,再同桌间说一说这个小数表示什么意思,看到这个小数,你又想到了那个小数?
4.师提问:
(1)你涂了哪个小数?
生汇报。
师:猜一猜他涂了几格,还能找到另外一个小数吗?
(2)你涂了几格?谁能知道他写的是哪个小数?
5.师:(指板书)刚才我们研究的小数都有什么特点?他们都表示什么?
生汇报师小结板书:两位小数表示的就是百分之几。(出示课件)其中的一份,就是一位小数的计数单位。也就是说两位小数的计数单位是(百分之一),写作(0.01)。
(三)理解三位小数的意义。
1.师:我们已经知道了一位小数表示十分之几,两位小数表示百分之几,那0.001是几位小数?(三位小数)。那三位小数又表示什么呢?生:它表示千分之几。(师板书)
师:那它的分数朋友是多少?()
师:那0.237表示什么?它的分数朋友是谁?
生:
师:小数是多少?
生汇报
2.师:谁能找一个大一点的三位小数?
生:0.999 =
师:要在正方形纸上涂上0.999会有什么感觉?
生汇报
如果再涂多少就涂满了?(0.001)
师:那也就是说(1000)个0.001是1。
师小结:三位小数表示的就是千分之几。(出示课件)其中的一份,就是三位小数的计数单位。也就是说三位小数的计数单位是(千分之一),写作(0.001)。
3.延伸:师:那如果把1平均分成10000份,这样的一份或几份用几位小数表示?(四位小数)。把1平均分成100000份,这样的一份或几份用几位小数表示?(五位小数)
……
师:看来同学们的类推能力都很强,能够根据前面所学的知识来回答老师的问题了。
(四)提炼小数意义
1.请同学们回想刚才的学习过程,说一说小数的意义到底是什么?
生汇报
小结:分母是10、100、1000……的分数都可以用小数表示(课件出示)。其实这就是小数的意义。
2.思考:(课件出示)通过刚才的学习我们知道小数的计数单位是十分之一、百分之一、千分之一‥‥‥分别写作0.1、0.01、0.001 ‥‥‥那这几个相邻的计数单位之间有什么关系呢?如果老师把正方体看做1的话,你能用分数和小数表示出涂色部分吗?
0.1里面有多少个0.01?0.01里面有多少个0.001?也就是说小数每相邻两个计数单位之间的进率是(10)。
3.师:大家回答的都不错,其实今天我们学习的小数在产生的过程中经历了一段较长的历史。同学们,请看(出示课件)
三、巩固内化:
师:今天有关小数的知识大家都学会了吗?那接下来咱们做几道题检验一下同学们的学习成果,好不好?
出示课件练习题。
1、填一填。
2、填上合适的数。
四、回顾反思:
1.师:一节课就快要结束了,下面我们一起来回顾一下我们刚才的学习过程。(出示课件)
2.自我评价:如果最好的表现是1,最不好的表现用0表示,你打算用什么数来表示自己的表现?
3.最后老师想送给同学们一段话--小知识:人类对自己大脑的利用水平却极低,普通人只利用了大脑的百分之二(0.02)到百分之五(0.05)左右,就连世界上最伟大的科学家爱因斯坦也只利用了大脑的十分之一(0.1)。
师:老师希望同学们能够尽可能的发挥自己的潜能,去畅游我们的数学王国。
小数乘小数教案篇4
学习目标:
1、体会小数所表示的意思,理解小数的意义。
2、理解和掌握小数意义。
教学重点:通过练习,体会小数的意义,知道小数所表示的含义。
教学难点:通过练习,体会小数的意义,知道小数所表示的含义。
教学准备:学生、老师准备计数器、小黑板
教法:小组合作交流法
学法:小组合作学习
教学课时:2课时
学习过程:
一、情景导入,呈现目标
1、你的身高是多少?你会用小数来描述吗?
2、你都在哪里见过小数?说一说,并写出几个你见过的小数来。
二、探究新知(自学后完成下面问题)
1、把1元平均分成十份,其中一份用分数表示是()元,用小数表示是()元。十分之三表示其中()份,用小数()表示。
2、把1元平均分成100份,其中的`一份用分数表示是()元,其中的37份用分数()表示,用小数()表示。
3、1、11表示()元()角()分。
三、合作探究,当堂训练
1、用数表示下面各图中得涂色部分?(课本第2页第2题)
2、想一想填一填?(学生独立完成)
3、自己画一方格纸,并画出0、1、0、5、0、6?
4、找一找生活中的小数,小组交流,选代表汇报。
四、精讲点拨(根据学生出现的问题进行精讲。)
五、学习收获,自我总结:
1、小组评价:你认为第几小组表现最棒,为什么?
2、自我总结:通过今天的学习,我学会了,以后我会在______________方面更加努力的。
课后反思:(略)
小数乘小数教案篇5
教学内容:p30练习五第3—6题。
教学目的:
1、使学生进一步理解并循环小数、有限小数、无限小数的概念,掌握它们之间的联系和区别,并能正确区分。
2、培养学生总结规律的能力,使学生既长知识,又长智慧。
3、培养学生学习数学的积极情感。
教学重点:进一步掌握相关概念并建立联系。
教学难点:对循环小数的实际应用。
教学过程:
一、主动回顾,知识再现:上节课我们学习了什么知识?
二、单项训练,夯实基础:
1、进一步理解循环小数的概念。
下面哪些数是循环小数,如何判断的?
0.666… 3.27676… 301415926… 40.03666… 100.7878
0.06262… 3.203203… 0.2142857142857… 70.2641
2、上面这些小数可以分为几类?哪几类?这几类小数有怎样的关系?
有限小数
小数 循环小数
无限小数
无限不循环小数
三、综合练习,运用提高:
1、求循环小数的近似值:p30第3题
先请学生说说取近似值的方法,再让学生独立完成。
2、p30第6题
先观察这些小数的特点,再试一试.
请学生说出判断大小的过程,教师适时评价。
方法:把这些简便记法的循环小数还原。
师小结:先观察需要还原的小数位数,再比较,比较方法与以前比较小数的大小方法相同。
四、独立练习 :p30第4、5题。
课后小记:
在今天的课上,我向学生说明了为什么所有除法算式的商不可能为无限不循环小数。因为余数必须要比除数小,所以任何除法算式余数的可能性是有限的。当除的次数比余数可能性的个数多时,必定出现与前面余数相同的现象。我用1除以7来举例说明,学生领悟得很快,绝大多数学生明白了其中的奥妙。
其次,我还向学生介绍了无限不循环小数即是初中所要学到的“无理数”。有学生(张子钊)问“我们学不学无理数呢?”,我简单介绍了六年级即将认识的小学阶段唯一一个无理数派。孩子们对无理数十分感兴趣,我又利用课余时间为他们补充介绍了无理数产生的数学史。
小数乘小数教案篇6
【教学目标】
1.使学生学会计算除数是整数的小数除法,理解并掌握除数是整数的小数除法的计算法则。
2.能正确地应用这一计算法则进行计算。
3.培养学生迁移类推的能力。
【教学重难点】
1.除数是整数的小数除法的计算法则。
2.除数是整数,除到被除数的末尾仍有余数以及商的最高位是0的小数除法的计算方法。
【教学过程】
一、激发
1.口答:小数的.性质是:小数的末尾添上0或去掉0,小数的(大小不变。)
2.板演:30.45÷29 108÷36(与提问同时进行)
3.上节课我们学习了比较容易的除数是整数的计算方法,谁说一下它的计算方法是什么?
4.订正板演,30.45÷29的商中间为什么有小数点?
5.引入:108能被36整除,如果把108改成117,还能被36整除吗?(不能)117除以36得到整数商3以后还有余数,如果继续除,应该怎么办?你可以解决这个问题吗?好!今天我们一起继续研究除数是整数的小数除法。
二、尝试
1.出示例2: 117÷36
2.生分组讨论并试算。
3.学生汇报:通过讨论、试算你知道了什么?
引导学生知道:36除9不够商1,可以根据小数末尾添上0以后小数大小不变的性质,在9的右面添上0看成是90个十分之一再除。90个十分之一除以36商2个十分之一。由于被除数117是整数,小数点没有写出来因此要在商的右面点上小数点后,再写商2个十分之一。
求出十分位上的商以后,还余18个十分之一。
4. 18个十分之一用36除,不够除,怎么办?(不够商1个十分之二。把18个十分之一看成低一级单位的数,再添0,是180个百分之一,再继续除)强化理解算理,引导学生共同把这道题做完。(生说师板书)
5.师进一步明确:在计算除法时,如果除到被除数的末尾仍有余数在余数的后面添0继续除。
6.使学生知道:小数除法除到最后没有余数了,叫做除尽了。
7.指名说说计算的步骤。
8.尝试后练习:下面的做一做 25.5÷6(计算时,被除数末尾需添一个0)
86÷16(计算时,被除数末尾需添三个0) 思考:遇到除不尽时怎么办? 集体订正时,说说计算步骤。
9.通过复习和例2的学习,你能说出除数是整数的小数除法的计算法则吗? 除数是整数的小数除法,按照整数除法法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0继续除。(板贴除数是整数的小数除法的计算法则)
10.反馈练习:32÷5 6.6÷4 37.5÷6 610÷16
三、示范
1.出示例3:计算1.69÷26
2.观察被除数与除数有什么特点?(被除数的整数部分比除数小)
3.师边板书例3的竖式,边提问:被除数的整数部分比除数小,商会出现什么情况?(不够商1)。不够商1怎么办?请同学们打开书看例3是怎样算的?
4.生看书讨论。
5.生汇报讨论结果,引导学生知道:被除数的整数部分比除数小,不够商1,就应该在被除数的个位上面,也就是商的个位上面写“0”,用0来占位。 师引导:我们把被除数的整数部分个位上的数和十分位上的数合起来看作16个十分之一。够不够除?怎样写商? 启发学生回答:仍然不够商1个十分之一,要在个位商0的右面点上小数点,再在十分位上写0占位。 把被除数看作169个百分之一,用26除。这跟前面的例子是类似的。你可以做完吗?生用乘法验算这道题计算的是否正确。
板书:个位和十分位上不够商1,都要写“0”。
6.示范后练习:做一做
(1)生独立计算。
(2)分组讨论,并引导学生得出:只要被除数比除数小,上的个位就不够商1,这样的除法得到的商都比1小。
(3)生仔细审题,说出错误原因(根据计算法则和计算时要注意的问题去检查)
四、应用
生独立填在书上。你找到什么规律了吗?
1. 在括号里填上适当的数。
( )×13=59.8 54.4 ÷( )=16
4 ×( )=134 ( )÷ 8=10.4
2.42021÷18 435÷12
五、体验:今天,你学会了什么?你有什么收获?
【作业布置】
xxx
小数乘小数教案篇7
上周参加了晋华小学片区的连片教研活动,作为主评教师参加了听课、评课活动。第一节课是晋华小学的范晓丽老师执教了“小数的初步认识”一课:课的流程如下:
一、了解学生认知引出课题:
数学与生活息息相关,之前认识了哪些数?还见过什么数?(小数)哪里见过?随后出示图:像这样的数都是小数。怎么知道是小数的?小数点是小数的标志,它把小数分成两部分,一部分是整数部分,另一部分是小数部分。这节课一起来认识小数。解决两个问题:读写小数、知道小数表示的含义。
二、小数的读写:
3.45kg
36.6°
0.6元
25.8元
1.米
0.85元
学生试读中解决问题,怎么读的.?
这些数表示什么?到底什么样的数写成小数呢?
三、小数的意义
出示:身高1米3分米用米作单位怎么表示?
1、1分米还可以怎么表示?5分米呢?……1米3分米呢?
四、检测练习小结
评析:
本课是老内容,知识点没有变化,但是又有变化,课时安排内容有变化,去掉了两位小数,教师比较难把握尺度。值得肯定的有:
1、关注学生的原有认知,从始到终,设计与学生认知接轨。
2、利用图片中的数据贯穿课的始终,线索清楚。
建议:
1、小数的读写要略,12.12为什么不读十二点十二,其实学习了小数的意义学生自然明白,而教师花费了太多的时间。
2、小数的意义形式上的理解居多,本质没有透彻,其实只要是十分之几的数就可以写成一位小数,要让学生理解,还需要教师再下功夫,再多笔墨。
小数乘小数教案篇8
一、设疑激趣
师:今天我们学习的内容跟哪种数有关?你从哪里发现的信息?
生:小数,从大屏幕上。
师:小数的意义就是小数表示什么?那你知道吗?
生:不知道。
师:那我们先来回顾一下我们的“小数”朋友,你在生活中遇见过小数吗?
生:遇见过。
师:在哪遇见过?
生1:在计算器上计算有余数的除法时出现了小数。
生2:去超市买东西时会遇见小数。(师跟进说标价是小数)
生3:卖菜时遇见小数,(一生补充说是称量重量时出现小数)
设计意图:让学生回顾和小数的“相遇”引出小数的生活意义,把数学和生活联系,让学生体会生活与数学的联系,以及数学的生活性,以此来激发学生的探究欲望。:
二、探究新知
1、小数的产生
师:可见小数在生活中是很有用的,那今天我们就先来研究一下它是怎样产生的。刚才同学们说在标价、计量、测量时会用到小数,还有计算时会出现小数,看是这样的吗?(大屏幕出示,测量课桌的长的图片)测量结果课桌长是多少呢?
生:(异口同声地回答)60厘米。
师:怎样用米来作单位呢?(有几人举手)它有1米吗?(没有)那不到1米可以用什么数来表示?(生小数)用哪个小数来表示呢?
生:一百分之六十。
师:一百分之六十是小数吗?(不是)那是什么数?(分数)那你说可以用分数来表示,那还可以用谁来表示呢?
生:0.60。
师:(师提示要带上单位)0.60米。这样我们就得到了一个小数0.60。体育赛事里也有小数,(出示世界飞人的100米短跑的成绩)博尔特以多少的成绩夺冠?
生:9.58秒。
师:出示一次数学检测的成绩98.5分,也是检测,再来一组口算。
出示口算:
10÷10=1÷10=
100÷10=1÷100=
1000÷10=1÷1000=
设计意图:兴趣是最活跃的心理成分,是一种带趋向性的心理特征。苏霍姆林斯基也说过:如果教师不设法使学生产生情绪高昂和智力振奋的状态就急于传授知识,不动情感的脑力劳动只会带来疲倦,没有欢欣鼓舞的心情,没有学习的兴趣,学习就会成为学生的负担。因此,在教学中,我创设了超市物品的价格、跑步成绩、身高、体重、体温等情境,让学生感到亲切,引起情感共鸣,体验身边处处有小数。同时,让学生体验测量课桌的长,使学生体会到在实际测量中有时会得不到整数值,必须用新的数来表示。进而又让学生进行口算,让学生动手操作、口算,亲身体验小数是怎样产生的,激发学生的积极性和主动性。:
生:0,赶紧改成1。
师:非常欣赏他知错就改的精神,但我更希望你能把问题完整的回答下来,语言叙述要准确,(再次完整的回答)。
师:1÷10=?(没人举手)那先来想想这道算式表示的意义是什么?
生:1里面有多少个十。
师:还可以用那句话来说?
生:把1平均分成10份,每份是几?都说是十分之一。
师:计算结果出现不是整数时,我们可以用以前分数表示,还可以用小数来表示。谁知道十分之一等于多少呢?(学生都愣了)十分之一是多少呢?用小数多少呢?(一生说是0.1)对吗?先留着,不知道,画一个问号。下边1÷100=?(0.01)用分数怎样表示呢?(一百分之一)那1÷1000=?就是把1平均分成1000分每份是多少?(一千分之一)那好我们一起来看一下(出示好几张图片)
师:刚才在进行计算和测量时,往往得不到整数的结果。这时就可以用小数来表示,这就是小数的产生,存在的生活意义。
反思:教师太过着急了,没有耐心等待孩子的思维发展,没能和上学生的心弦。原本是等孩子们经历完三道计算后再引出小数的,但是一次就出来了。所以小数的产生没能顺理成章的出现。:
2、教学小数的意义
师:能不能把刚才得到的小数读出来呢?从左往右,要学生一起读。你能不能把这几个小数分成两类呢?
0.85 9.58 38.2 0.6 39.4 98.5
生:0.85 9.58是一类,其余是一类。
师:能不能说说你的分类理由?
生:后面是两位、一位。
师:她说是后面,(一生即使补充是小数点后面)说得真好,来欣赏一下,(追问,指着0.85 9.58问)小数点后面是几位呀?(两位)那我们就把它称作两位小数,(指着38.2 0.6 39.4 98.5)小数点后面有几位?(一位)那就叫(学生根据直觉说)一位小数。那小数肯定还会有?
生:三位小数,四位小数,五位小数……
师:小数的位数是无尽的,研究小数也要从简单入手,咱们就先从研究一位小数入手。我们借助常用的一个长度单位来研究,(出示米尺图)请读出一句话。
设计意图:让学生通过观察思考及演示,层层设问,利用旧知逐步将学生引向新知。学生对小数的位数有一定的理解,渗透化难为易的数学研究思想。:
反思:本环节的分类有两种,一种是按小数的位数分类,另一种是按照整数部分是否0(是否纯小数)来分,一种是为本节的小数意义作铺垫,一种是为小数的后续研究做伏笔,但自己却把第一种分法板示后,把后者遗忘了。:
教师出示:把1米平均分成10份。
师:把1米平均分成10份,每一份是多长?
生:10厘米。
1分米。
师:1分米和10厘米相等吗?(相等)都可以,那你能不能用一个分数来表示呢?
生:一百分之一。
生:十分之一。
师:把一米平均分成了十分,那分母就应该是几?(10)十分之一米可以用哪个小数来表示?(0.1米)观察1分米,1/10米,0.1米它们都是指把一米平均分成10份,其中的一份的长度,那你说这三个数是否相等?(等于,完成板书1分米=1/10米=0.1米,擦掉问号)1分米是其中的几份呢?
师:这个数如何表示呢?(4/10米,0.4米)这两个长度一样吗?(一样)那就可以用等号连接。谁能说一下4/10米里面有多少个1/10米?(4个)
师:你能表示这个数吗?(7分米,7/10米,0.7米)那你能说说0.7里面有多少个0.1吗?(异口同声,7个)
擦掉单位发现:1/10 =0.1,那你以后看到0.1就要想到1/10,0.1就是谁了?(1/10)0.4里面有()个1/10,0.4就是分数()。0.7里面有()个1/10,0.7就是分数()。
师:你发现分数与小数的联系了吗?
分母是10的分数,可以写成一位小数。一位小数表示十分之几,它是的计数单位是十分之一,也就是0.1。
师:0.2米表示什么?0.8米呢?你再说两个一位小数,并说出他们的意义。
设计意图:在后面的教学中实现知识的正向迁移,理解分数与小数之间的联系。进而理解小数的意义。:
(2)认识两位小数
师(引导学生观察米尺):把1米平均分成100份,每份是多少呢?
生:是一百分之一米。
师:还可以怎样表示呢?
生:0.01米,1厘米。(补充板书)
师:一百分之一米,它的分母是多少?(100)分母是100的分数写成了几位小数?(两位小数)你还能把几厘米表示成这样的数吗?你想表示几厘米就表示几厘米?(老师是涂色吗?)不是,是自己写一个几厘米把它用小数,分数表示。
反思:问题提出的较为模糊,所以自己不断地去补充、重复问题。就这还有孩子不知我说啥,还是自己的问题指向目标不明确造成的。:
交流自己写的:
师:你写的是多少?
生1:7厘米,是7/100米,0.07米。
师:你能猜一猜两位小数与什么样的分数有关系吗?
(指名回答并板书:1厘米=1/100米=0.01米;7厘米=7/100米=0.07米。)
生(口答):0.01里面有()个1/100,0.20里面有()个1/100,0.32里面有()个1/100,并说出用哪个分数来表示。
引导发现:两位小数表示百分之几,它的计数单位是百分之一,也就是0.01。
师:0.32里面有多少个百分之一呢?(32个)这就是小数0.32表示的意义。
(3)认识三位小数
出示:一位小数表示十分之几,它的计数单位是十分之一,可以写作 0.1。
两位小数表示百分之几,它的计数单位是百分之一,可以写作0.01。
师:刚才我们认识了一位小数、两位小数的意义和计数单位,那以此类推,你知道
三位小数表示什么?(千分之几)它的计数单位是(千分之一),可以写作(0.001)。
四位小数表示什么呢?计数单位呢?可以写作?五位小数呢?小数的位数能说完吗?……(不能)是无穷的。
师(借助米尺,使学生明确):把1米平均分成一千份,每份是多少?(1毫米)
1毫米是千分之一米,还可以写成0.001米来表示。(板书:1毫米,米,0.001米)
设计意图:数学思想方法是高一级的知识,是对知识的一种本质揭示,是数学知识结构的灵魂。在教学中,既要注重学生知识的获取和能力的培养,更应注重数学思想方法的渗透。本节课中,在教学1分米=1/10米=0、1米时,先让学生初步感悟十进制分数与一位小数之间的联系,进而由此迁移类推得到许多一位小数,让学生比较这些小数的共同点,归纳出一位小数的意义。在此基础上又让学生迁移,类比认识二位小数、三位小数,从而归纳出小数的意义。后又通过观察、思考、类推出三位、四位小数的计数单位。:
(4)抽象、概括小数的意义
师:小数是什么?
补充并概括:小数其实就是分母是10、100、1000……的分数的另一种书写形式。分母是10、100、1000、……的分数可以仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数叫做小数。
师:0.85是几位小数?它就是哪个分数呢?它的意义是什么呢?0.85表示什么?
生:85个0.01,还可以表示把一个整体平均分成100份,有这样的85份。
师:这就是0.85这个小数表示的意义。0.1、0.01、0.001……这些是小数的计数单位,那整数的计数单位有哪些?
生:个、十、百、千、万……
师:每相邻两个计数单位之间的进率是多少?(10)接下来我们来研究小数的计数单位。
3、小数单位间的进率
师:这是一个正方形,可以用“1”来表示,(演示把它平均分成十份,其中一份涂红色问),这是怎样分的?(十分之一、平均分)怎样分?平均分成10份,涂色部分是其中的几份?(1份)可以用哪个数来表示?(十分之一)还可应用谁来表示?(0.1)1里面有多少个0.1呢?(10个)
师:(把图继续分成100份)发生了怎样的变化?平均分成了多少分份?(100份)其中的一份用哪个数来表示?(0.01、一百分之一)那0.1里有几个0.01呢?(10个)那小数计数单位之间的进率也是10。把这个正方形平均分成1000份呢?每份是多少?0.01里面有多少个0.001?那我们就接着把小数的计数单位写在整数的计数单位后面,并用小数点隔开,这样就把整数和小数整合了。
反思:这个问题的抛出有点突然,显得计数单位更加抽象了,不如换成先让学生猜测它们之间的进率,在通过正方形平均分的动手操作、验证。借助正方形的十分之一、百分之一、千分之一来揭示小数的计数单位间的进率。:
三、巩固练习
师:9. 58的9在哪一位上?(个位)表示什么?(9个一)这个5表示什么?(5个0.1)8呢?(8个0.01)
1、下面括号里能填几。
0.1米里有()个0.01米,0.01米里面有()个0.001米。
得出:相邻两个计数单位之间的进率是10。
师:现在你知道为什么要借助长度来研究小数的意义吗?(知道)因为毫米、厘米、分米、米每相邻的单位之间的进率也是10。
设计意图:借助长度单位理解,再次得出每相邻两个计数单位之间的进率是10。重点理解“相邻”二字的含义,突破难点,巩固分数与小数之间的关系,加深对小数意义、小数计数单位及单位间进率的理解,并达到学以致用。:
2、(1)用合适的数表示图中的涂色部分。
(2)用合适的数表示图中的空白部分。
3、先写出一个两位小数,再用阴影表示这个小数。(交流自己写的小数及其意义)
4、找朋友。
四、课堂总结
师:以前学过整数、分数,今天又学习了小数,通过今天的联系我们知道它们之间有一定的联系?
生:每相邻的计数单位之间的进率都是十。
生:小数就是分数。
生:小数的计数单位是0.1、0.01、0.001……也可以用分数十分之一、百分之一、千分之一……来表示。
五、你知道吗
了解小数的起源、发展史。
会计实习心得体会最新模板相关文章: