教案的编写应根据学生的实际接受程度,合理安排教学内容的难易程度,教案的编写过程需要教师仔细思考和选择适合的教学方法和策略,这有助于提升教师的教学技能,下面是丫丫文章网小编为您分享的北师大9年级数学上册教案5篇,感谢您的参阅。
北师大9年级数学上册教案篇1
教学目标
1.理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;
2.能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;
3.三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;
4.通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;
5.本节课通过行程问题说明法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。
教学建议
(一)重点、难点分析
本节的教学重点是能够熟练进行运算。依据法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的'基础。运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。
本节的难点是对法则的理解。法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。
(二)知识结构
(三)教法建议
1.有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。
2.两数相乘时,确定符号的依据是“同号得正,异号得负”.绝对值相乘也就是小学学过的算术乘法.
3.基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。
4.几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么,至少有一个因数为0.
5.小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。
6.如果因数是带分数,一般要将它化为假分数,以便于约分。
北师大9年级数学上册教案篇2
1.1 生活中的立体图形
?教学过程:〗
一、看一看:(情境创设)
教师(导语):在我们的生活中,充满着各种各样的图形,其优美的结构值得我们鉴赏,其奇妙的性质等着我们去探究。请听来自世界图形的对话吧。
设计:(1)卡通a(代表平面图形):“我是平面图形,是大家的老朋友,我家的家庭成员一定比你家多。”
(2)卡通b(代表立体图形):“我是立体图形,是大家的新朋友,大家知道的并不一定比你少。”
教师(问):卡通a、b身体各部分是什么图形?
通过卡通a、b 的对话,组织学生讨论,派代表指着屏幕上图形说明自己的观念,让学生主动参与,激起他们的兴趣。培养集体意识,增强团队精神。
教师(导语):看来同学们非常善于观察图形,不知你们能否用数学的眼光观察生活中的图形?请看来自生活中的立体图形。
(出示课题):生活中的立体图形
音乐响起,屏幕播放录象。
二、议一议(课堂讨论)
问题1:你发现录象中的这些物体与哪些立体图形相类似,你能找出与这些立体图形相类似的物体吗?
组织学生围绕以上问题四人一小组讨论,说明自己的观念,其他小组积极点评,补充,得出常见的立体图形:圆柱、圆锥、正方体、球、棱锥。
问题2:比较这些立体图形,看看相互之间有什么相同点和不同点?
电脑演示:(1)球体 (2)圆柱 (3)圆锥
并通过实物展示,引导学生观察、讨论、归纳,得出常见的立体图形的分类:球体、柱体、椎体。
电脑演示:由圆柱变成棱柱(三棱柱、四棱柱、五棱柱┉┉),
问题3 以三棱柱为例,说出一个棱柱的棱数与底面的边数,侧面的平面的个数之间的关系?
诱导学生思考:当棱柱的棱柱的棱数越来越多时,棱柱就越来越趋向于什么立体图形?
(用类似的方法),电脑演示:将圆锥演变成棱椎(三棱锥、四棱锥、五棱椎┉),再由棱锥演变成圆锥。
通过一连串的活动,让学生掌握从特殊到一般,再有一般到特殊的`的认知思想,了解图形之间的相互联系。通过对比,确立分类思想。并用类比的方法,自主的讨论、归纳,突出重点、化解难点,在轻松的氛围中学习。
三、练一练(评价)
遵循“由浅入深,循序渐进,由感性到理性”的认知规律,依据“主体参与,分层优化,及时反馈,激励评价”的原则,我设计了以下训练题:
1、发给学生一些图片或实物,说说手中的图形,是什么立体图形?没有发到的学生,举出立体图形的实例。
尽量让每个学生都发言,注意培养学生的语言表达能力。
北师大9年级数学上册教案篇3
学生很容易解决,相互交流,自我评价,增强学生的主人翁意识。
3、电脑演示:
如下图,第一行的图形绕虚线旋转一周,便能形成第二行的某个几何体,用线连一连。
由平面图形动成立体图形,由静态到动态,让学生感受到几何图形的奇妙无穷,更加激发他们的好奇心和探索欲望。
四、做一做(实践)
1、用牙签和橡皮泥制作球体和一些柱体和锥体,看哪些同学做得比较标准。
2、使出事先准备好的等边三角形纸片,试将它折成一个正四面体。
五、试一试(探索)
课前,发给学生阅读材料《晶体--自然界的多面体》,让学生通过阅读了解什么是正多面体,正多面体是柏拉图约在公元400年独立发现的,在这之前,埃及人已经用于建筑(埃及金字塔),以此激励学生探索的`欲望。
教师出示实物模型:正四面体、正方体、正八面体、正十二面体、正二十面体
1、以正四面体为例,说出它的顶点数、棱数和面数。
2、再让学生观察、讨论其它正多面体的顶点数、棱数和面数。将结果记入书上的p128的表格。引导学生发现结论。
3、(延伸):若随意做一个多面体,看看是否还是那个结果。
学生在探索过程中,可能会遇到困难,师生可以共同参与,适当点拨,归纳出欧拉公式,并介绍欧拉这个人,进行科学探索精神教育,充分挖掘学生的潜能,让学生积极参与集体探讨,建立良好的相互了解的师生关系。
六、小结,布置课后作业:
1、用六根火柴:①最多可以拼出几个边长相等的三角形?②最多可以拼出如图所示的三角形几个?
2、针对我校电脑室对全体学生开放的优势,教师告诉学生网址,让学生从网上学习正多面体的制作。
让学生去动手操作,根据自身的能力,充分发挥创造性思维,培养学生的创新精神,使每个学生都能得到充分发展。
北师大9年级数学上册教案篇4
教学内容:
课本第12~17页上的内容。
教学目标:
1.通过观察、分析、讨论、归纳、猜想的研究方法,小组合作研究出偶数+偶数=偶数,奇数+奇数=偶数,偶数+奇数= 奇数。
2.经历探索加法中数的奇偶变化过程,在活动重视学生体验探究方法,培养学生分析、解决问题的能力。
3.结合小游戏使学生体会生活中有很多事情中存在数学规律,从而调动学生学习数学的兴趣。
4.通过实践报告,以小组合作的形式探究加法中奇偶性的变化规律,培养学生的小组合作意识。
教学重点:
从生活中的摆渡问题,发现数的奇偶性规律。
教学难点:
运用数的奇偶性规律解决生活中的实际问题。
教具准备:
投影、杯子。
教学过程:
一、揭示课题
自然数包含有奇数和偶数,一个自然数不是奇数就是偶数。这一节课我们要进一步认识数的奇偶性。
二、组织活动,探索新知
活动一:示图(右图)
小船最在南岸,从南岸驶向北岸,
再从北岸驶回南岸,不断往返。
1、
(1)小船摆渡11次后,船在南岸还是北岸?为什么?
(2)有人说摆渡100次后,小船在北岸。
他的说法对吗?为什么?
2、请任说一个摆渡的次数,学生回答在南岸还是北岸?
3、请学生画示意图和列表并观察。
4、想:摆渡的次数与船所在的位置有什么关系?
摆渡奇数次后,船在 岸。
摆渡偶数次后,船在 岸。
试一试
一个杯子杯口朝上放在桌上,翻动1次,杯口朝下,反动2次杯口朝上。翻动10次后,杯口朝 ,反动19次后杯口朝 。
1、想一想:翻动的次数与杯口的朝向有什么关系?
翻动奇数次后,杯口朝 。
翻动偶数次后,杯口朝 。
2、把杯子换成硬币你能提出类似的问题吗?
活动二
圆中的数有什么特点?正方形中的数有什么特点?
圆中的数都是偶数,正方形中的数都是奇数
试一试:(投影)
三、巩固练习(投影出示习题)
四、总结
这节课同学们有什么收获和体会?
五、作业
1、课本第17页试一试的题目。
2、优化作业
北师大9年级数学上册教案篇5
设计说明
小数除法的内容分为两部分:小数除法的计算方法和用小数除法解决实际问题。小数除法和整数除法在计算方法上有内在的联系,因此,把整数除法与相应的小数除法对比复习,使学生在比较两者计算方法的联系和区别的基础上,进一步巩固小数除法的计算方法。复习解决问题时,要求学生结合具体情境,根据数量关系,综合运用小数除法的知识解决生活中的实际问题。
课前准备
教师准备ppt课件
教学过程
⊙问题回顾,知识再现
1.交代复习内容,引导学生浏览教材的相关内容,梳理学过的知识。
师:这节课,我们一起来复习小数除法。(师板书课题:小数除法)
引导学生回顾下列内容:
(1)除数是整数的小数除法的计算方法。
(2)除数是小数的小数除法的计算方法。
(3)如何求商的近似值?理解循环小数的意义。
(4)小数四则混合运算的顺序是怎样的?
2.引导学生先浏览教材,梳理知识,再逐一回答以上的问题。
⊙分层练习,巩固提高
基本练习,巩固新知。
(1)课件出示:117÷36=1.69÷26=
(2)师找两名学生板演,其他学生在练习本上做。
117÷36=3.251.69÷26=0.065
(3)学生独立计算。集体订正时,让学生说一说:除数是整数的小数除法,计算时应注意什么?师强调以上两道题的做法。
(4)课件出示:56.28÷0.67=
(5)学生独立计算。找一名学生板演,其他学生在练习本上做。集体订正时,让学生说一说:除数是小数的除法,计算时应注意什么?
设计意图:
在练习中回顾小数除法的知识,在总结的过程中,既梳理了小数除法的内容,又为下面的练习做好了准备。
⊙综合练习,深化应用
1.15.3÷11的商是(),它是()小数,循环节是(),保留三位小数是()。
2.在○里填上“>”“
4.59÷4○4.59
9.5÷0.92○9.5
0÷18.2○0×18.2
71.4+0.999○71.4+1
1.54÷(1+0.01)○1.54
(4.05+4.5)÷2○4.05
3.先说出运算顺序,再计算。
(1)75.6÷13.5-(3.6+1.78)
(2)2.3+3.91÷(22-19.7)
(3)18-(1.4+1.25×2.4)
(4)[15.2+(8.4-4.5×0.8)]÷1.6
学生独立完成,指名板演。全班交流,根据出现的问题及时进行解决。
设计意图:
通过练习,巩固小数除法的计算方法,能正确熟练地计算。
会计实习心得体会最新模板相关文章: